(Gl A)n GigaScience, 2023, 12, 1-16
gCIENQ E

DOI: 10.1093/gigascience/giad046
Technical Note

OXFORD

Efficient real-time selective genome sequencing on
resource-constrained devices

Po Jui Shih “1* Hassaan Saadat 2, Sri Parameswaran 3 and Hasindu Gamaarachchi = 45*

tSchool of Computer Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia

2School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia

3School of Electrical and Information Engineering, University of Sydney, Sydney, NSW 2006, Australia

“Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia

>Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children’s Research Institute, Sydney 2010, Australia
*Correspondence address. Po Jui Shih, Computer Science Building (K17), Engineering Rd, UNSW Sydney, Kensington NSW 2052, Australia. E-mail:
pojui.shih@unsw.edu.au, Hasindu Gamaarachchi, Computer Science Building (K17), Engineering Rd, UNSW Sydney, Kensington NSW 2052, Australia. E-mail:
h.gamaarachchi@garvan.org.au

Abstract

Background: Third-generation nanopore sequencers offer selective sequencing or “Read Until” that allows genomic reads to be ana-
lyzed in real time and abandoned halfway if not belonging to a genomic region of “interest.” This selective sequencing opens the door
to important applications such as rapid and low-cost genetic tests. The latency in analyzing should be as low as possible for selective
sequencing to be effective so that unnecessary reads can be rejected as early as possible. However, existing methods that employ a
subsequence dynamic time warping (SDTW) algorithm for this problem are too computationally intensive that a massive workstation
with dozens of CPU cores still struggles to keep up with the data rate of a mobile phone-sized MinION sequencer.

Results: In this article, we present Hardware Accelerated Read Until (HARU), a resource-efficient hardware-software codesign-
based method that exploits a low-cost and portable heterogeneous multiprocessor system-on-chip platform with on-chip field-
programmable gate arrays (FPGA) to accelerate the sDTW-based Read Until algorithm. Experimental results show that HARU on a
Xilinx FPGA embedded with a 4-core ARM processor is around 2.5x faster than a highly optimized multithreaded software version
(around 85x faster than the existing unoptimized multithreaded software) running on a sophisticated server with a 36-core Intel
Xeon processor for a SARS-CoV-2 dataset. The energy consumption of HARU is 2 orders of magnitudes lower than the same applica-
tion executing on the 36-core server.

Conclusions: HARU demonstrates that nanopore selective sequencing is possible on resource-constrained devices through rigorous
hardware-software optimizations. The source code for the HARU sDTW module is available as open source at https://github.com/bee
bdev/HARU, and an example application that uses HARU is at https://github.com/beebdev/sigfish-haru.

Keywords: selective sequencing, adaptive sampling, nanopore, subsequence dynamic time warping, FPGA, hardware acceleration,
edge computing

Introduction

Key Points . . .
The latest third-generation nanopore sequencing technology has

Hardware-accelerated signal-matching Read Until de-
signed for resource-constrained embedded platforms.
A resource-efficient subsequence dynamic time warping
(sDTW) accelerator for selective sequencing.

Full proposed design (software processing layer, devices
drivers, hardware sDTW accelerator): https://github.c
om/beebdev/HARU

Example application using HARU and optimized C im-
plementation of RUscripts: https://github.com/beebdev
/sigfish-haru.

Modified RUscripts (supports Python 3.6+, BLOWS for-
mat, ONT’s R9.4 chemistry): https://github.com/beebdev
/RUscripts-R9.

revolutionized the field of genomics. The portable palm-sized
nanopore sequencer called the MinION produced by Oxford
Nanopore Technologies (ONT) can perform direct selective se-
quencing, which rejects the genomic reads that are not of inter-
est. This technique, also known as Read Until, can vastly reduce
the sequencing time and cost for applications such as genetic dis-
ease identification [1, 2], cancer detection [3, 4], and the surveil-
lance of viruses (e.g., SARS-CoV-2) and other pathogens [5, 6], as
well as sequencing low-abundance species metagenomics sam-
ples [7]. However, the real-time analysis of genomic reads involves
the complex and time-consuming process of aligning the read to
the reference to obtain the position information. Ideally, the real-
time analysis should be performed on a low-cost, low-power, and
portable device [8-10], which is the aim of this article.

Existing alignment methods for selective sequencing use high-
performance computing systems to meet the real-time processing
requirement, compromising portability, cost-effectiveness, and

202 Yotely L1 uoisanb Aq 80/ 12./90pelb/eousiosebib/ce0l 01 /1op/alonie/eousiosebib/woo dnoolwepeose//:sdiy wolj papeojumoq

Received: November 19, 2022. Revised: April 11, 2023. Accepted: June 2, 2023

© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0001-9088-4409
http://orcid.org/0000-0003-3691-4130
http://orcid.org/0000-0003-0435-9080
http://orcid.org/0000-0002-9034-9905
mailto:pojui.shih@unsw.edu.au
mailto:h.gamaarachchi@garvan.org.au
https://github.com/beebdev/HARU
https://github.com/beebdev/sigfish-haru
https://github.com/beebdev/HARU
https://github.com/beebdev/sigfish-haru
https://github.com/beebdev/RUscripts-R9
https://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2023, Vol. 12, No. 0

power efficiency. The very first nanopore selective sequencing
method tackled the alignment problem directly in signal do-
main [11]. It used subsequence dynamic time warping (sSDTW) for di-
rect signal mapping for the early R7 nanopore chemistry, which
could sequence at a speed of 70 bases/s. However, with the intro-
duction of the R9 nanopore chemistry with a 450 bases/s speed
[12], sDTW-based Read Until could not keep up with a portable
palm-sized MinION sequencer, even when running on a 22-core
high-performance computing (HPC) system. The sDTW computa-
tion alone takes more than 98% of the total runtime.

The current base-domain Read Until implementations [13] first
convert signal reads to bases using GPU-accelerated basecallers
and then map them to the reference base sequence using se-
quence mapping techniques (e.g., Minimap?2 [14]). Although the
mapping techniques in the base domain are optimized and ma-
tured in the bioinformatics field, the prerequisite basecalling step
is compute-intensive and is a significant bottleneck for Read Until
implementations. To keep up with the sequencing rate, the execu-
tion of basecalling requires high-end GPU hardware (NVIDIA RTX
1080 for simple reference targets [13] and NVIDIA RTX 3090 for
more complex targets [1]), which makes selective sequencing ex-
pensive, power-hungry, nonportable, and nonscalable. Therefore,
researchers have shown significant interest in developing meth-
ods to process the raw signals directly (to avoid this compute-
intensive basecalling step), and it has become an active and grow-
ing research area [11, 15-21].

In this article, to address the lack of portability and costly exe-
cution nature of existing solutions, we aim to develop a portable,
low-cost, and power-efficient solution for selective sequencing
in raw signal domain. We present Hardware Accelerated Read
Until (HARU) (Fig. 1), a software-hardware codesign system for
raw signal-alignment Read Until that uses the memory-efficient
sDTW hardware accelerator for high-throughput signal mapping.

HARU primarily targets low-cost, resource-constrained het-
erogeneous multiprocessor system-on-chip (MPSoC) devices with
on-chip reconfigurable hardware and performs efficient mul-
tithreaded batch-processing for signal preparation in conjunc-
tion with the sDTW accelerator. HARU tackles the computa-
tional bottleneck by accelerating the sDTW algorithm with field-
programmable gate arrays (FPGAs). The memory-efficient sSDTW
accelerator for Read Until is designed by exploiting the fine-
grained parallelism offered by the FPGA and has a computational
time complexity of O(M + N). The sSDTW accelerator is loaded onto
the on-chip FPGA and interfaced with the software application
through software drivers. Sequenced raw-signal samples are pre-
processed in software before streaming into the sDTW accelerator
(Fig. 1). Mapping results of the signal are then returned to the ap-
plication through the software driver for postprocessing.

We demonstrate that HARU gains around 85x speedup against
the original software implementation mapping the SARS-CoV-2
sequenced data on a 36-core HPC system. Furthermore, we show
that HARU runs around 2.5x faster than an optimized multi-
threaded software implementation on the same 36-core server
and around 6.5x faster than the same software running on a 10-
core Intel Core i19-10850K desktop. The energy consumption of
HARU is 341.7 x lower than the same application executing on the
36-core server.

HARU is a complete system for selective sequencing that works
on off-the-shelf devices, as opposed to being a conceptual work
limited to simulation. For instance, one may purchase the targeted
device used in this article (Xilinx’s Kria Al Starter Kit, which has
a quad-core ARM Cortex A53 with 4 GB of RAM and an on-chip
FPGA), flash the device, and execute HARU. In its current form,

HARU is limited to kilobase-sized genomes. However, this is the
first time a selective sequencing work is shown to be able to ex-
ecute selective sequencing on such a low-power and lightweight
device and, more importantly, running on off-the-shelf low-cost
hardware. HARU demonstrates that selective sequencing can be
performed efficiently on an edge device with an excellent price to
performance-per-watt ratio. We believe this work will inspire the
possibility of performing selective sequencing directly on a chip
within a nanopore sequencer.

HARU can also be used as a framework for other future work in-
tending to explore acceleration for selective sequencing on FPGAs
by replacing the sSDTW core in HARU. As a stepping stone for such
projects, this allows quick verification of the experimental core
producing practical results instead of being limited to using soft-
ware simulation. We have provided step-by-step instructions and
documentation on building the overarching system from scratch.
In addition, the interface to the accelerator is exposed as a library
so that the application layer source code can call the interface and
treat the accelerator as a black box. We selected Xilinx's Kria Al
Starter Kit as the target reference device for HARU, with the in-
tention of HARU being used as a framework for future developers
focusing on similar genomics FPGA acceleration work. The xmu-
til tool on the Kria platform allows easy access to system perfor-
mance and information metrics as well as fast loading and replac-
ing of FPGA bitstreams, allowing users to quickly change hardware
accelerators for different applications without rebooting the sys-
tem. Xilinx’s Kria supports tools such as Vitis HLS (C to HDL gen-
eration) and PYNQ (Python framework for Zynq MPSoCs), which
allows researchers with limited hardware backgrounds to design
accelerators for their applications.

Background

Nanopore selective sequencing

Nanopore sequencers from ONT are third-generation genomic se-
quencers that are capable of producinglong reads (currently rang-
ing between 1 kilobases to >2 megabases) [22, 23] and are com-
mercially available at an affordable price compared to sequencers
of other techniques and generations [24]. These ONT nanopore se-
quencers provide genomic reads through flow cells, which contain
a proprietary sensor array over nanopore channels embedded in
a synthetic membrane [25]. During the sequencing process, the
nanopore channels capture the electric current change caused by
the genome molecules’ ionic current when it passes through [25].
This current signal trace is streamed to the sequencer software
in real time and can later be basecalled into the corresponding
nucleobase representation for later analysis [26].

A feature of ONT nanopore sequencers is the direct selective
sequencing capability. These sequencers provide real-time data
output streams and allow the rejection of reads at individual
nanopore channels [11, 13]. This means the sequenced data can
be analyzed during the sequencing and rejected before comple-
tion if decided it is not of interest. This selective sequencing pro-
cess in the nanopore sequencing workflow is known as Read Un-
til. ONT provides the Read Until Application Programming Inter-
face (API) interface for software applications to access and reject
the sequenced reads in real time. A rejection made through the
API call will eventually be passed back to the sequencer. The volt-
age at the indicated channel will be reversed to eject the genomic
molecule out of the nanopore [11].

For the Read Until execution to be effective, the round-trip
task latency for read acquisition, analysis, and rejection signal

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

Sequencer & Laptop
7

'~ s S

pm——

. 3 Rejection Selection Position &
i @ MiniON i« Criteria Score
l 5 Pre-processor .
Genomic L 58] p(reado [D tS §| (pary)
Reads =) 188 —— 8=
- : S| MThreadn [(| © e
¥
i Post-alignment \
! Analysis ! sDTW || AXI

i HARU (MPSoC)

Accelerator [*—| DMA

FPGA

Figure 1: HARU overview.

forwarding should be completed before the majority of the sub-
ject read is sequenced by the nanopore sequencer [11]. Rejections
made after most of the strand is sequenced bring no benefit as
no sequencing time is saved. Existing Read Until methods per-
form analysis by aligning the genomic reads to the target refer-
ence and making the rejection decision based on the position and
distance score. This alignment can be done using either signal or
base alignment [11, 13, 15, 16, 27, 28|.

Signal-alignment Read Until

Signal-alignment Read Until aligns raw signal reads with the refer-
ence to obtain the alignment position and distance score, as seen
in Fig. 2A. Reference sequences usually are obtained in base rep-
resentation (in the base equivalent “ACGT” characters) and need
to be converted to a synthetic signal representation before be-
ing used to map the reads. This can be done using the k-mer
model, which slides a window size of k bases over the base ref-
erence while the bases in the window are mapped to a value us-
ing the k-mer model hash-map (see Fig. 2A). The obtained align-
ment position and score are then used to determine if a rejec-
tion should be made, which is custom to application usage. This
signal-alignment workflow was first shown by Loose et al. [11] in
the RUscripts work, which is also the first Read Until implementa-
tion introduced. RUscripts is a Python implementation that uses
the sDTW algorithm to align initial segments of the raw signals to
the synthetic reference and can match 1 read every 0.3 seconds
on a single CPU core [11]. At the time of the proposal, RUscripts
could keep up with the 70-bases/s nanopore sequencing rate on a
22-core server [11]. However, as sequencing speed improved over
the years, the current 450-bases/s sequencing rate [12] surpassed
RUscripts’s capability of performing Read Until during sequenc-
ing. We observed that 98% of processing time is spent processing
the O(MN) sDTW algorithm.

Base-alignment Read Until

As signal-aligning Read Until could not keep up with improved
sequencing rates due to sDTW, researchers turned the focus of
Read Until workflows toward base-domain techniques [13, 27].
These techniques align the genomic reads in the base domain
as opposed to the signal domain, which requires an extra step
of basecalling the signal to base sequences in real time before
alignment (see Fig. 2B). Thanks to well-optimized multistate align-
ment implementations such as Minimap2 [14] and the propri-
etary GPU-accelerated basecaller Guppy from ONT, it can out-
speed the sequencing rate to save time. Recent FPGA accelera-

tion work on Minimap? [29, 30] could further speed up the base-
level alignment. Yet, the extensive power usage and the need
for high-performance GPUs and CPUs for basecalling make base-
alignment Read Until expensive and nonportable [1].

Potential for signal-alignment Read Until

Alignment in the signal domain and alignment in the base do-
main share high similarities in their algorithms and mainly dif-
fer in the sequence representation [31]. Though base-alignment
methods are fast and can keep up with current sequencing rates
[1, 13], basecalling is a bottleneck in current base-alignment Read
Until methods. Thus, we hypothesize that signal-domain Read Un-
til could reach better performance if enough optimization and ac-
celeration work is applied to signal alignment as it does not re-
quire the additional basecalling step. In this work, we revitalize
the direct signal approach by optimizing and exploiting hardware
acceleration for the sDTW alignment methodology targeting low-
cost embedded heterogeneous platforms, which also addresses
the high cost of Read Until executions.

The dynamic time warping algorithm family includes dynamic
programming algorithms that provide optimal alignment and dis-
tance metrics between 2 given time series [32] and have been
widely used in pattern recognition applications in different fields
[33, 34]. This optimal alignment is achieved by warping the time-
series samples (see Fig. 3A), which is done by keeping an M x N
sized cost matrix. The classical DTW (cDTW) algorithm performs
global alignment of the signals (see Fig. 3B) [32], while the sDTW
algorithm performs local alignment of the smaller sequence in
the larger sequence (see Fig. 3C) [35]. Read Until attempts to find
the local alignment of the query on the reference and thus uses
sDTW, which is elaborated as follows.

SDTW problem

Given 2 sequences X of size Mand Y of size Nwhere1l <M <N € I\,
the sDTW distance is the summation of the distance in the opti-
mal warp path Weyna. The warp paths considered are all the paths
that align the sequence X with any subsequence of the sequence
Y. The dynamic programming formulation of sDTW is based on
the recurrence relation of the following equation:

y(i—1,J)
(i j)=38(j)+min{y(i-1.j-1) (1)
v(i,j=1)

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

Read signal

Reference

Read Until API

AN~~~

-

-

[aTc[e[T] .. TA[c]
-

-

v

Synthetic Reference

K-mer model

Signal
Alignment

AAAAC | 21

A Signal-alignment Read Until

!

TTTT [31

Position
+ Score

T
1
1
A 4
Synthetic Reference

(
1
1
-l
1
- 1 T
1
1
1
1
1
1
1
1
1
1
1
1
\

1
1
I
1
I
1
I
1
1
AAAAA [12 I
1
I
1
I
1
I
1
1
1

Read signal

Read Until API

—>

Base query

Base-calling ATe[elT]

!

Reference

Base

[alcTe[T]A[c]G[T]

[alc[T[c] Alignment

B Base-alignment Read Until
Figure 2: Overview of Read Until workflows.

where § is the distance measure between samplesand 1 >i> M, 1
> j > N.Distance measure metrics in DTW are not limited to a sin-
gle method. Popular distance metrics include Euclidean distance,
squared Euclidean distance, and Manhattan distance. The bound-
ary conditions for y(i,j) include y (i, 0) = co and y (0, j) = 0, and with
a bottom-up memoization, the y values are stored in a cost matrix
Cofsize M x N (i.e, C[i, j] := y(3,])). y essentially chooses, at each
step, the lowest cost move. In Equation 1, (i — 1, j) indicates an
insertion from sequence X into sequence Y, whereas y(i — 1,j — 1)
indicates a match and y(i, j — 1) indicates a deletion. Once the cost
matrix C is populated, the cell with the minimum distance value
in the last row would be the ending position of the local align-
ment. Backtracking from the end position by, again, choosing the
step with the lowest cost among the same dependency will give
the optimal warp path and starting position (see Fig. 3C).

Time and space complexity

The sDTW approach is given in Algorithm 1. As shown, sDTW
is O(MN) in time and space complexity due to the 2-dimensional
search space. This has led to heavy computational bottlenecks in
applications such as RUscripts discussed in the “Nanopore selec-
tive sequencing” section. To date, not many sDTW optimization
methods exist, and cDTW optimizations such as lower bounding
[36, 37] and applying global constraints [38, 39] do not bring many
benefits as the necessary search space is much larger than just
the diagonal connecting start and end positions of the sequences.

Fig. 4A compares the overall performance of HARU for mapping all
the 1.382 million reads of the SARS-CoV-2 dataset (see “Datasets”
section) with software-only implementations. The y-axis of Fig. 4A

!

Position
+ Score

Algorithm 1: Subsequence DTW

Input :X[1:M],Y[1:N],M,N
Output: position, score
C: cost matrix of size M x N;
score < oo;
position « —1;
for j in range 1 to N do

| CTT.JT < abs(X[d] - YL
end
for i in range 2 to M do

| C[i.1] < abs(X[i] — Y[1]) + C[i — 1, 1J;
end
for i in range 2 to M do

for j in range 2 to N do

d <~ min(C[i—1,j].C[i,j—1].C[i— 1, j — 1]);
C[i, j] < abs(X[i] = Y[j]) + d;

0 NOUAWN R

B R e
NP oW

-
w

end

[
>

end

min_score < C[M, 1]for j in range 2 to N do
if C[M, j] < min_score then
position < J;
score < C[M, j];

end

P
Lo N’

N
=)

end

N
~

is the signal mapping throughput (mapping throughput is the
execution time divided by the number of reads in the dataset).
The first bar in Fig. 4A represents the original Python-based
RUSscripts (see “Pure software implementations” section) running
on the HPC with all 36 cores (throughput: 12.52 reads/s). The last
bar represents our HARU system with a throughput of 1,073.83
reads/s. Thus, our HARU system is ~85.8x faster than the original
RUscripts. The second bar shows the optimized C implementation
of RUscripts (see “Pure software implementations” section) on the
desktop system with a 10-core 19 processor, and the throughput
is 162.29 reads/s (HARU is 6.6x faster). Then, the third bar is for
the optimized C implementation run with all 36 Xeon cores on the
HPC, and the throughput is 432.06 reads/second. The HARU sys-
tem being implemented on a low-cost embedded FPGA system is

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

Hardware Accelerated ReadUntil

Sequence Y

x
()]
e
)]
=)
o
()]
wv
0 2 4 6 8 10 12 14
A Signal warping B Classical DTW
Sequence Y

Sequence X

¢ Subsequence DTW

Figure 3: [llustration of DTW.

1200 200
1000 SAR-CoV-2 160 RFC1
" Reference size: 29,898 Reference size: 128,915
800) e
E Query size: 250 events 120 || Query size: 250 events
$ 600 Trimmed prefix: 50 events S Trimmed prefix: 50 events
(-3 L 30
400 o«
200 40
0 | | 0
RUscripts Opti-RU Opti-RU Opti-RU HARU RUscripts Opti-RU Opti-RU Opti-RU HARU
@HPC @Desktop @HPC @MPSoC @MPSoC @HPC @Desktop @HPC @MPSoC @MPSoC
(sw) (sw) (sw) (SW) (SW+FPGA) (sw) (sw) (sw) (SW) (SW +FPGA)
A SARS-CoV-2 dataset B RFC1 dataset

Figure 4: Mapping throughput for the selective sequencing.

5

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

6 | GigaScience, 2023, Vol. 12, No. 0

70

= - 9= Intel Core i9-10850K b4
E 60 'l
~ 50 —2—sDTW Accelerator on Kria !
g /

S 40 /

[g

® 30 S

- ’,

§ 20 //

d
= 10 -’.I
0 L—p—pmmpume=]
128 1024 8192 65536

Reference Length

Figure 5: sDTW task latency.

still ~2.49x faster than the server. The fourth bar in Fig. 4A is for
the optimized C implementation on the MPSoC run only on the
4-core ARM CPU, which has a throughput of 11.09 reads/s. Thus,
HARU that uses the FPGA is 96.8x faster than running on the ARM
processor alone.

Similarly, Fig. 4B compares the overall HARU performance for
mapping all the 500,000 reads of the human dataset to the ref-
erence containing the RFC1 gene (see “Datasets” section). HARU
(last bar) is 64.5x faster than RUscripts on the 36-core HPC (first
bar); 5.8x and 4.7x faster than optimized C implementation on
the 10-core desktop (second bar) and 36-core HPC (third bar), re-
spectively; and 66.2x faster than the optimized C implementation
on a 4-core ARM processor (fourth bar) alone.

Note that time measurement for the above throughput calcula-
tion for HARU includes all the overheads, including reading signal
data from the disk, raw signal preprocessing on software, and data
transfer time to/from FPGA for HARU, with our FPGA implemen-
tation running at 100 MHz. The speedups observed for HARU over
other systems in Fig. 4A (SARS-CoV-2 reference) are higher com-
pared to those in Fig. 4B (RFC1 reference) because the RFC reads
are larger (128 Kb) than the SARS-CoV-2 reads (29 Kb) as explained
below.

Performance of the SDTW over reference length

Fig. 5 shows how the performance of our sDTW core in HARU
executed on the FPGA (including the overhead for data transfer
to/from FPGA) and the pure software version of DTW executed on
the CPU varies over the reference length. The x-axis is the refer-
ence length on a number of bases on the log scale. The y-axis is
the time taken for a single sSDTW query. For the CPU (red curve),
this y-axis represents the time for executing the sDTW function
on a single CPU thread, whereas for the FPGA (blue curve), this is
the time for processing on the FPGA plus the data transfer to and
from the FPGA. Observe in Fig. 5 how the gap between the 2 curves
increases with the reference length, which causes the speedup of
HARU over the CPU to increase with increased reference size. This
behavior is due to a band of cells being computed in parallel on
hardware using a processing elements (PE) chain (see “Resource-
efficient SDTW accelerator” section).

The time breakdown for different processing
steps

Fig. 6 compares the percentage of time spent on different process-
ing steps for HARU versus the optimized software implementation
in percentages. Due to the significant speedup of sDTW, the per-
centage of runtime spent on sDTW is <64% for the SARS-CoV-2

HARU
(RFC1)

HARU
(SARS-CoV-2)

Desktop
(RFC1)

Desktop
(SARS-CoV-2)

0% 20% 40% 60% 80% 100%
B Data transfer
@ Others

BsDTW B Normalisation

O Event detection

Figure 6: Process time breakdown.

100
920
80 9
70
60
50
40
30
20
10

0

|

HARU's scaling factor

Accuracy (%)

2 4 8 16 32 64 128 256
Scaling factor

Figure 7: Accuracy against scaling factor.

dataset and >46% for the RFC1 data set (top 2 bars), whereas this
was >98% for software (bottom 2 bars). Note that “others”in Fig. 6
is the time spent loading data from the disk, reference prepara-
tion, and writing the output.

Accuracy

Fig. 7 shows the accuracy of the accelerator using different scal-
ing factors (discussed in the “Software processing layer” section).
Accuracy in Fig. 7 is calculated as a percentage of the number of
mapping positions similar to results produced from sDTW com-
puted on software using 32-bit floating points. Observe that a scal-
ing factor of 2 yields a limited accuracy (80%), while increasing
the scaling factor gradually converges the accuracy toward 100%.
However, when scaled above 128, the distance cost accumulation
results in data overflow during sSDTW, which largely impacts the
alignment accuracy. In HARU, we have used a scaling factor of 32
to prevent overflow while having an accuracy close to 99%. Re-
fer to Supplementary Note 1 for further information on using a
fixed-point and a static scaling factor.

Energy comparison

Fig. 8 shows the estimated energy efficiency (y-axis) plotted
against the execution time (x-axis) for HARU and optimized
software-only implementations on different processors. HARU's
overall performance and energy efficiency are considerably lower
(close to the origin of the graph: time 0.94 ms/read and en-
ergy 1.05 mJ/read) than the optimized version running on ARM
(90.2 ms/read, 217.9 mJ/read), Intel Core-i9 (5.9 ms/read, 740.9
mJ/read), and Intel Xeon Gold processor (1.8 ms/read, 358.3
mJj/read). The energy-delay product is 644.94 for the server but
0.987 for HARU. Thus, HARU is 650x better in terms of energy-

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

800

=}

2 700 ©-5.9,740.9

S

= 600

£

£ 500

g 1.8,358.3

g 400

2 300 B

S 90.2, 217.9

£ 200 A
& 100 | 094,105

g 0

w (] 20 40 60 80 100

Time (ms) per read
[Intel Xeon Gold 6154 o Intel Core i9-10850K
A ARM Cortex A53 © HARU

Figure 8: Energy and performance.

Table 1: sDTW accelerator resource utilization.

Resource Available Used (utilization)
CLB LUT 117,120 21,121 (18.03%)
CLB Registers 234,240 16,798 (7.17%)
CARRYS 14,640 1,787 (12.21%)
F7 Muxes 58,560 9 (0.02%)

delay product. The energy consumed for HARU and the ARM pro-
cessor was estimated using the power estimates reported by Vi-
vado in the synthesis report. In contrast, the thermal design power
(TDP) value reported in the processor specification was used for
Intel processors. For additional power analysis information for the
HARU system on the Kria device, please refer to Supplementary
Note 8.

The resource utilization for our sSDTW accelerator, which loads the
reference signal to the on-chip block RAM memory before run-
ning, with a single query processor on the Kria board, as reported
by the Vivado synthesis report, is shown in Table 1.

Note that we used a single query processor for all the above
experiments to show the bare minimum performance on a low-
end FPGA platform. As shown in Table 1, the maximum utilization
(CLB LUT) is <20%,; thus, in theory, the Kria board can fit up to at
least 4 parallel query processors with some engineering effort. In
fact, we have an experimental branch that does not use on-chip
block RAM to store references beforehand and directly streams
reference signals together with queries. This means multiple ac-
celerators on the same FPGA will not have critical paths in be-
tween accelerators. For the postimplementation resource utiliza-
tion of 4 accelerators targeting the Xilinx Kria Al Starter Kit, see
Supplementary Note 2.

The analysis in the preceding subsections represents the most
equitable comparisons possible. In this subsection, we attempt
to compare HARU with other existing alternate methods. We
must acknowledge that making a direct comparison is challeng-
ing as different methods are tailored toward different goals and
intended for specific systems. Also, it is important to note that
each method possesses its own distinct advantage and could be
used complementarily.

Comparisons with DeepSelectNet and Guppy+Minimap2

To compare HARU with DeepSelectNet [19] (an enhanced neu-
ral network-based method based on SquiggleNet [20] to classify
reads from 2 classes of species) and the approach used in Read-
fish [13] (Guppy fast basecalling followed by Minimap?2 for map-
ping), we used a dataset containing reads from 2 species, SARS-
CoV-2 and yeast (see Methods, Supplementary Notes 3 and 4).
DeepSelectNet was executed on a server with a Tesla V100 GPU
(as the proof-of-concept implementation is not supported on an
edge GPU). Without a GPU, neural network-based methods will
be impractically slow. HARU executing on the Xilinx Kria embed-
ded platform (1,066.3 reads/s) was yet 2.103x faster (Fig. 9) than
DeepSelectNet running on the server (507.1 reads/s). As Guppy
binaries for ARM processors are available and Minimap2 can be
easily compiled for ARM [40], we executed Guppy_fast+Minimap?2
on an NVIDIA Jetson Xavier edge GPU device as Guppy is im-
practically slow without a GPU (see Methods). HARU was still
3.354x faster than Guppy_fast+Minimap2 (317.94 reads/s). In the
Guppy_fast+Minimap2 approach, Guppy took 96.4% of the time,
demonstrating that in base alignment-based selective sequenc-
ing methods, basecalling is the bottleneck. The accuracy of HARU
(97.41%, Methods, Supplementary Note 4) was better than DeepS-
electNet (91.78%) and Guppy_fast+Minimap?2 (91.46%).

Note that Python-based DeepSelectNet is a proof-of-concept
design to run on servers and is not optimized for perfor-
mance. Therefore, the aforementioned numerical values should
not be interpreted as definitive, as the method could poten-
tially be optimized for embedded systems. When comparing with
Guppy-+Minimap?2, note that Guppy was executed on a GPU, while
HARU is designed for an FPGA architecture. It is possible that im-
plementing Guppy on an FPGA could improve its performance.
The accuracy of Guppy+Minimap2 was evaluated using default
parameters in Minimap2, and parameter tuning may resultin bet-
ter accuracy. However, such work is beyond the scope of this cur-
rent study.

Comparison with UNCALLED

To compare HARU with UNCALLED, we mapped SARS-CoV-2 reads
to the SARS-CoV-2 reference and compared the mapping location
of reads reported by UNCALLED and HARU to Minimap2's map-
ping (see Methods and Supplementary Note 4). UNCALLED was
executed on a Rock64 edge-computing board, which has a quad-
core ARM Cortex A53 processor with 4 GB of RAM, similar to the
Kria device used for HARU. UNCALLED has many software depen-
dencies and requires a package manager, which is not available on
the Kria device running PetaLinux (see Methods). HARU's through-
put (1,066.33 reads/s) is 36.85x higher than UNCALLED on Rock64
(28.94 reads/s). The accuracy of UNCALLED (91.2%) is still lower
than HARU'’s (97.41%).

Note that when comparing UNCALLED with HARU, UNCALLED
is executed on the CPU while HARU runs on the CPU and FPGA
heterogeneously. The results above must not be wrongly inter-
preted that UNCALLED is not lightweight, in fact, UNCALLED is
much less CPU demanding than sDTW and scales well for larger
references. While itis notin the scope of this work, optimizing UN-
CALLED and implementing it on FPGA could yield better results.

Comparison with SquiggleFilter

SquiggleFilter [18] is a conceptual ASIC design for selective se-
quencing. As it is a conceptual ASIC design work yet to be fab-
ricated and integrated with the envisioned system on chip (SoC)
[18], we are unable to compare the performance throughput and

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

1200 100
20
- 1000
% 80
® 800 0 <
g 60
= oy
5 600 50 ®
o 5
® 400 0 S
§ 30 <
£ 200 20
10
0 0
HARU DeepSelectNet Guppy_fast+Minimap2
@ Throughput (reads/s) O Accuracy (%)

Figure 9: Comparison between HARU and state-of-the-art methods.

accuracy. However, with the provided HDL source code, the re-
source utilization of HARU and SquiggleFilter can be compared.
We set the SquiggleFilter design to use 2,000 PEs as claimed in
[18], set the target device to the Kria Al starter kit, and manu-
ally synthesized the individual modules (as the design does not
include a synthesizable top-level module orchestrating all sub-
modules). Postsynthesis results show that the PE used in Squig-
gleFilter requires 2.15x more CLB LUTSs (88), 5.81x more CLB Reg-
isters (93), and 2.75x more CARRY8 resources than HARU’s PE in
the sDTW accelerator (41, 16, and 4, respectively). As Squiggle-
Filter requires 2,000 PEs for a single tile of accelerator (while HARU
requires only 250 as it uses events), the warper in SquiggleFilter
requires 8.44x more CLB LUTs (178,553), 11.54x more CLB Reg-
isters (191,991), and 12.5x more CARRY8s (22,002) than the total
resource utilization of HARU'’s sDTW accelerator (21,158, 16,634,
and 7,160, respectively). Note that this comparison for Squiggle-
Filter is excluding the normalizer, mean finder, and mean absolute
deviation finder, and its top-level entity. See Supplementary Note
4 for a more detailed resource comparison.

We also note that although claimed to be verified on FPGA,
SquiggleFilter is primarily an ASIC design work. The results above
target the Kria Al Starter Kit device that HARU uses, and synthe-
sis results may differ based on target devices. Nevertheless, HARU
shows to have an advantage over SquiggleFilter when targeting
FPGAs for deployment with its much more efficient resource uti-
lization. In addition, HARU is a complete system integrated with
off-the-shelf hardware devices with software support.

HARU targets low-cost MPSoCs with on-chip FPGA to perform
selective sequencing processing. Fig. 10 shows the architecture
of HARU in an ONT nanopore sequencing workflow. HARU con-
sists of 3 main components: the software processing layer, device
drivers for the accelerator and associated hardware, and the hard-
ware sDTW accelerator. The software processing layer, discussed
in the “Software processing layer” section, uses a multithreaded
batch processing architecture to perform raw read signal prepro-
cessing and is customizable based on the selection criteria. The
device drivers, discussed in the “HARU device drivers” section, are
designed to provide high-throughput data transferring of query
and reference signals. Lastly, the resource-efficient sDTW acceler-
ator, discussed in the “Resource-efficient sSDTW accelerator” sec-

tion, performs high-throughput sDTW for the selective sequenc-
ing use case.

Software processing layer

The software processing layer of HARU is the front end of the
HARU design running on the processing system on the MPSoC.
Its main tasks include preprocessing the reference sequence and
raw signal reads and the final selection decision. Since references
are obtained in base representation as discussed in the “Nanopore
selective sequencing” section, the initialization step of the soft-
ware processing layer forms the synthetic reference signal for the
forward and reverse representation of the base reference (this is
needed since DNA molecules are double-stranded) using the k-
mer model for the flowcell type. Then, in preparation for the sSDTW
computation in hardware, the reference signal is normalized us-
ing z-score normalization. Since the data types used for the sig-
nal and cost matrix in the sSDTW accelerator are 16-bit fixed-point
types (discussed in the “Resource-efficient sSDTW accelerator” sec-
tion), the normalized values are scaled with a scaling factor to
preserve signal resolution.

During the genome sequencing step, the software layer collects
sequenced data from the nanopore sequencer in batches, which
are then dispatched into multiple threads for efficient comput-
ing of preprocessing (see Fig. 10). Each thread performs event de-
tection on the raw signal samples to reduce sample data size for
the sDTW accelerator. This is done until enough events are col-
lected. For the R9.4 flowcell, 250 events are typically adequate for
mapping and would require roughly 0.4 to 0.8 seconds of data
collection, which includes the time to obtain around 50 to 300
events that belong to the read adapter and then followed by the
actual 250 events of the query (see Supplementary Note 5 for
more information). After the collection, the events are normal-
ized and scaled with the same scaling factor used in the refer-
ence signal preparation. When threads finish the preprocessing,
the processed data are gathered and sent to the sDTW acceler-
ator for processing using the drivers. After which, the mapping
position and the similarity score are used to decide whether the
read should be rejected.

HARU device drivers

To control and use the hardware accelerator in the software pro-
cessing layer, we designed the software device drivers to have 2
main data paths (see Fig. 10). The first data path is the control
path of the accelerator, which uses the AMBA AXI4-Lite protocol
to configure the control registers and read status registers in the

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

Nanopore Sequencer

\

’
! 1
1 1
i

{ Y
i Host Machine | Zynq MPSoC 1
X i) Read Until i
MinION > MinkNOW f+—> ™% HARU |
| S —— ;
e ™
Thread 0 User Space
Event detection H Normalizer |
U y, Selection
sdtw [-
o N criteria
Data batch [
—>]
dispatcher |— | Event detection H Normalizer
\ /) sDTW accel driver
——
s N
] . . 1
| Event detection H Normalizer | ! —-| search() [
. D i |—|
[}
FPGA DDR ! .
i AXI DMA driver
/dev/mem i
e
sDTW Accelerator sdtw |<— -tF---- Vo=
1
5 “tr----- ' | mm2s ()
l—l
AXI DMA | dmabuffer | I 'T'"()IJ
\——— N—

Figure 10: HARU architecture.

software. The accelerator’s physical address is memory-mapped
to the virtual address space for user space applications to use.

The second data path is for the query and reference sequences.
To prevent data transfer from becoming a bottleneck, we use the
AMBA AXI4-Stream protocol to stream query and reference data
into the accelerator at a high-throughput rate. This is done by
using the AXI direct memory access (DMA) module to point to a
physical hardware address to stream data to and from. By calling
the driver function for processing the query, the sSDTW accelerator
driver initiates the transfer from the query and reference buffers
to the transfer buffer on double data rate (DDR) memory dedi-
cated to AXI-stream communication and the FPGA. Our bench-
marks show that data can be sent to and from the accelerator at
a throughput of 330 MB/s.

Resource-efficient SDTW accelerator

Algorithm 2: Memory-efficient subsequence DTW

Input :X[1:M],Y[1:N],M,N
Output: position, score
1 C: array of size M + 1 initialised to oo;
2 score < oo;
3 position « —1;

4 for jinrange 1to N do

5 n<0;

6 nw <« C[1];

7 w <« C[2];

8 for i in range 1 to M do
9 C[i] == abs(x[i] — y[j]) + min(n, nw, w);
10 n:=C[i];

11 nw = w;

12 w :=C[i+2];

13 end

14 if C[M] < score then

15 position « j;

16 score < C[M];

17 end

18 end

As discussed in the “Subsequence dynamic time warping” sec-
tion, the standard sDTW algorithm has O(MN) time and space
complexity due to the computation of the cost matrix. The com-
putation of a cell value in the cost matrix requires comparing 3
neighbor cell values, making the exploitation of available hard-
ware parallelism harder. Also, the preservation of the full cost
matrix does not scale well if directly implemented on resource-
constrained FPGA devices. We identified that the backtracking of
the cost matrix to obtain the warp path is unnecessary for Read
Until as the ending position is adequate to make the rejection de-
cision. We provide the following optimizations over sSDTW to ob-
tain a resource-efficient high-throughput sDTW accelerator.

Cost matrix memory optimization

The need to preserve the M x N sized matrix for backtracking was
discussed in the “Subsequence dynamic time warping” section.
However, for selective sequencing, the obtained end position of
the alignmentis adequate to determine the location of the current
query; thus, the backtracking step for obtaining the starting posi-
tion is unnecessary. Consequently, preserving the whole cost ma-
trix values is unnecessary, and a cost array of M + 1 is sufficient.
Algorithm 2 shows the sSDTW algorithm after the cost matrix size
is reduced. The outer loop (line 4 of Algorithm 2) iterates through
the whole reference sequence, while the nested inner loop (line
8 of Algorithm 2) iterates through the column at each reference
sample. During each iteration of the inner loop, the computation
of the recurrence equation is performed, and the computed value
is stored in the cost array that is the same size as the query. Once
the inner loop completes, the current minimum score and posi-
tion values are updated if the last cell of the cost matrix is smaller
than the current minimum score. As the computation is done in
the same way as the original sDTW with the whole cost matrix,
there is no impact on accuracy from this optimization.

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

10 | GigaScience, 2023, Vol. 12, No. 0

Operation pipelining

The sDTW cost matrix size reduction explained above optimizes
the space complexity of the computation for selective sequenc-
ing. However, the algorithm’s execution is still sequential and has
O(MN) time complexity. Computing the whole column in paral-
lel by unrolling the inner loop is not feasible due to the data
dependency in the recurrence equation that needs waiting until
the n value is ready (see Algorithm 2). We observe that once the
first iteration of the inner loop for the column is completed, all
data dependencies for the first inner loop iteration for the next
column are ready. By pipelining the outer loop computation, an
oblique column is formed that is computed in parallel, as shown
in Fig. 11. This oblique column traverses through the reference se-
quences, reducing the time complexity from O(MN) to O(N) since
the N query size is now computed in parallel. Since all cell com-
putations are computed only after the dependencies are satisfied,
pipelining does not affect the accuracy of sSDTW.

Fixed-point data representation

After the optimization above, the hardware’s computational com-
plexity is O(M). However, the actual time needed is (M + N — 1)
x II, where II is the initiation interval (i.e., the number of cy-
cles between loop iterations). In pipelined Algorithm 2, II is how
fast the reference equation C[i] := abs(x[i] — y[j]) + min(n, nw, w)
can be computed. Normally, 32-bit floating-point data types are
used for the sDTW computation to preserve the precision after
the sequences are normalized. This is expensive to implement
in hardware regarding resources and execution time. By using a
fixed-point representation with fewer data bits and scaling the se-
quence values using a scaling factor, the recurrence equation can
be computed in hardware rapidly and efficiently while keeping
sufficient precision. We chose 16-bit fixed points with a scaling
factor of 2° as it gives sufficient precision and keeps I at 1 clock
cycle (see section Results on accuracy). Using fixed point with a
static scaling factor will decrease the accuracy slightly as we are
using fewer bits to represent the decimal points compared to float-
ing points. Nevertheless, this data representation will still pro-
vide close to zero difference in mapping accuracy compared to
using floating points (see Supplementary Notes 1 and 6 for more
detail).

HARU'’s sDTW Accelerator

The oblique parallel-computed column mentioned above uses
a PE-chain structure where data-dependent neighbor cells are
shared among the PEs (Fig. 11). As shown in Fig. 12, the shared
values are stored in 2 register arrays of size M (L1 being the pre-
vious cost array and L2 being the second previous cost array). At
each iteration, the costs in the L1 array are shifted into the L2 ar-
ray, while the current costs are passed onto the L1 array. Each PE
computes the recurrence equation, which takes the Manhattan
distance (8 = |x[i] — y[j]|) and adds the minimum of the 3 neighbor
cells (see Equation 1). Samples of the reference sequence are first
streamed into the first PE of the chain and are then passed along to
successive PEs in each iteration. In the “Software processing layer”
section, we discussed that the software processing layer uses mul-
tithreaded batch processing to perform event detection and nor-
malization. The event detection decreases the query size to make
the M term smaller in the algorithm complexity. We choose to use
a size of 250 events (see Supplementary Note 5), giving the accel-
erator a PE chain of 250 PEs. In total, it takes N + 250 — 1 clock
cycles to complete the full search.

Experimental setup

The HARU system, proposed in the “Design of hardware accel-
erated Read Until” section, was implemented on Xilinx’s Kria Al
Starter Kit with a Zynq Ultrascale+ XCK26-SFVC784-2LV-C MP-
SoC. This board contains a processing system with a quad-core
ARM Cortex A53 CPU and 4 GB of DDR4 memory (specifications
on column “MPSoC” in Table 2). Implementation details of HARU
are discussed in the “HARU implementation” section. This HARU
implementation is compared to 2 pure software implementations,
discussed in the “Pure software implementations” section. These
2 software versions are executed on a desktop computer compris-
inga 10-core Intel Core-i9 processor and a high-performance com-
puter (server) with a 36-core Intel Xeon processor (specifications
arein Table 2). We performed the experiments on 2 representative
datasets, detailed in the “Datasets” section.

HARU implementation

The operating system running on the processing system of the
board is a customized embedded Linux image generated using Xil-
inx’s Petalinux 2021.1 tool. To show the bare minimum through-
put of the accelerator, our sDTW accelerator is synthesized with a
single-query processor in the accelerator clocked at 100 MHz. The
number of query processors that can fit in the FPGA depends on
the available resource on the device; see the “Resource utilization”
section for resource utilization of the accelerator with a single-
query processor.

sDTW hardware accelerator

The sDTW accelerator was implemented using Verilog Hardware
Descriptive Language (HDL). Synthesis was performed using Xil-
inx’s Vivado 2021.1. The control bus interface for the accelerator
uses the AMBA AXI-Lite protocol. We use the AMBA AXI-Stream
protocol through the AXI DMA hardware in the FPGA for high-
throughput data transfer for the query and reference data.

HARU driver

Device drivers were implemented for the hardware accelerator
and AXI DMA in the C programming language. The accelera-
tor and AXI DMA drivers memory-map the physical address of
corresponding devices into the virtual address space for utiliza-
tion by the user space applications. The shared communication
memory buffers between software and FPGA are preserved on
the DDR memory, which is allocated during the initialization
stage.

Software processing layer

The software processing layer that prepares the raw signals and
performs the selecting decision was implemented in the C pro-
gramming language. For benchmarking experiments, the soft-
ware loads raw signal data in the BLOWS format [41] from a
USB 3 external hard drive connected to the Kria board. Raw sig-
nals for a batch of reads are first loaded to the Random Ac-
cess Memory (RAM) and are preprocessed using multiple threads
implemented using POSIX threads. Preprocessing steps include
event detection, prefix trimming, and normalization (explained in
the “Software processing layer” section). Then, sDTW is performed
on each read in hardware by iteratively calling the HARU driver.
Once the mapped positions and the DTW scores are available
for the whole batch, the software computes the mapping qual-
ity (MAPQ) [42] and executes the selection criteria based on this
score [11].

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

Sequence Y
Yiz | Yia | Yi | [Viems|Yiem-2| Yiem1| Yiem |Yiemea) = E
Cost matrix
X3
< =
g | X] n i
e i :
g ! '
= ; cqr X |i
(5”1 Xm-1 : T E
1
1 Yy !
Xem e J
Figure 11: Pipelined execution of Algorithm 2.
AXI-Stream AXI-Lite AXI-Stream
AXls-Slave AXI-Slave AXls-Master
L2 t
| refrence same | pata ik
ntrol Status
| Status | o
I
Core sDTW | Score Updater
Query | | | | | | Cycle Counter |—>| position
Buffer I
l l l I _l_ -, |—> Score
! 1 Comparator —’W’—I—
'IPE|_—l-|PE|T~--|PE|T|, pE | | || [1=0mP
I
= _\‘7,’___-_____-_. ______________ \‘
! | Processing Element | :
costf [[- [[]]}s '
T3 ||y [Previousy f———" |
1 1
Prev Cost L1 | | | | | | : Absolute :
T | > 1
X 5
Prev Cost L2 | | | | | : 13 :
'S n_nw w !

Figure 12: sDTW hardware accelerator design for HARU.

Table 2: Computational platforms.

System HPC Desktop MPSoC
CPU Intel Xeon Gold 6154 Intel Core i9-10850K Arm Cortex-A53
CPU cores 36 10 4

Clock rate 3.00 GHz 3.60 GHz 1.5 GHz
RAM 377 GB 32 GB 4GB
FPGA No No Yes

Pure software implementations
RUscripts

Original RUscripts, written by Loose et al. [11] using Python 2.7,
has reached end-of-life support and targets ONT’s R7 Nanopore
chemistry, which is no longer in use. We modified RUscripts to
work on Python 3.6+ and extended it to support BLOWS format
and ONT's current Nanopore chemistry R9.4. This support for R9.4
chemistry is implemented by integrating the R9.4 pore model and
R9.4 event detection parameters [43, 44].

Optimized RUscripts in C

As the Python RUscripts is not efficient enough for a fair compari-
son, we implemented a multithreaded C implementation that fol-
lows similar algorithmic steps. This implementation in C is very
similar to the software explained above (see the “Software pro-
cessing layer” section), except that sDTW on the CPU is called with
multiple threads instead of using the FPGA accelerator. The sDTW
computation on the CPU is performed using the optimized sDTW
implementation in the mlpy library [35].

Datasets

HARU was tested against combinations of software running on the
systems mentioned in Table 2 on 2 datasets. The first dataset is the
SARS-CoV-2 genomic reads sequenced on a MinION R9.4 flowcell
and has a total of 1.382 million reads (Table 3), publicly available at
[45]. The SARS-CoV-2 genome (MN908947.3), which is 29,903 bases
long, is used as the reference for this experiment. The second
datasetis a subset of a NA12878 human genome reference sample
containing 500,000 reads sequenced on a PromethION R9.4 flow-
cell (Table 3), publicly available at [41]. This dataset is mapped to

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

12 | GigaScience, 2023, Vol. 12, No. 0

Table 3: Datasets.

Target SARS-CoV-2 RFC1

Type Viral genome Partial human genome
No. of bases 29,903 128,915

Search space size 59,806 257,830

No. of reads 1,382k 500k

SLOWS file size 5.5 GB 39 GB

a reference constructed by extracting the region chr4:39262456-
39391375 (128 Kb long) of the human genome (hg38). This re-
gion includes the RFC1 gene, which contains an important
pathogenic variant indicative of hereditary cerebellar ataxia dis-
ease, and selective sequencing has been applied [1] for accurate
diagnosis.

Performance evaluation

We measure the overall execution time of mapping all reads of the
provided datasets by using the gettimeofday function in C. This exe-
cution time is divided by the number of reads in the dataset to cal-
culate the signal mapping throughput. Note that all our time mea-
surements used in throughput calculation include all the over-
heads, including reading signal data from the disk, raw signal pre-
processing on software, and data transfer time to/from FPGA for
HARU.

Comparison with alternate methods

To compare HARU with DeepSelectNet and the approach in Read-
fish (Guppy2 followed by Minimap?2), we used the curated test
data for SARS-CoV-2 and yeast from [19] that contained 20,000
reads from each species. DeepSelectNet was installed and exe-
cuted on a workstation with a Tesla V100-16GB GPU, 20 CPU cores,
and 384 GB RAM (Supplementary Notes 3 and 4). Guppy 6.1.3
and Minimap?2 2.20 were set up and run on an NVIDIA Jetson
Xavier AGX board. Note that we activated the 15-W nvpmodel on
this device to make the specification closer to what is available
on the Kria board used for HARU. The dna_r9.4.1_450bps_fast.cfg
model was used for Guppy, and a combined reference genome of
SARS-CoV-2 and yeast was used for Minimap2 (Supplementary
Note 7). For DeepSelectNet, the first 4,500 signal samples were
used (default options), with the same number of signal samples
used for Guppy+Minimap?2. For HARU, we used the default pre-
fix and query size in HARU (50 + 250) that approximately re-
lates to around 1,500 to 3,000 signal samples. The accuracy of
each method was calculated as the sum of true positives and true
negatives divided by the total reads (Supplementary Note 4). For
HARU, where the reads from each species were mapped against
the SARS-CoV-2 reference, the cutoff value for SDTW scores to de-
termine if a read mapped to SARS-CoV-2 or not was determined,
as explained in Supplementary Note 3.

To compare against UNCALLED, we used 40,000 reads from the
SARS-CoV-2 dataset (in subsection Datasets). UNCALLED was in-
stalled on a Rock64 embedded device that has a similar comput-
ing power (quad-core ARM Cortex A53 with 4 GB RAM) to the Kria
board used for HARU. This is because UNCALLED has many de-
pendencies, and enabling support for the Kria platform, which
runs a custom Petalinux distribution, is laborious. Despite the
Rock64 board supporting Ubuntu and the apt package manager
along with Python/PIP and C/C++ build tools, we still had to man-
ually intervene in the UNCALLED installation scripts to enable
support for HDF5 and BWA dependencies to build on ARM. Both
HARU and UNCALLED were executed using the SARS-CoV-2 refer-

ence, and the accuracy was calculated by using UNCALLED paf-
stats by comparing mapping locations to Minimap2 mappings as
the truth set (Supplementary Note 7). The —chunk-time and —-max-
chunks 1 parameters in UNCALLED were used to limit the number
of signal samples to 3,200 (Supplementary Note 7). For generating
the truth set using Minimap?2, the complete reads were basecalled
and mapped.

Discussion

Signal-level versus base-level selective
sequencing

The field of selective sequencing is a nascent area, and to
date, no definitive solution has emerged as the panacea. Both
signal-level and base-level approaches to selective sequencing
have advantages and disadvantages, and determining which is
the optimal approach at this stage is more of a philosophical
debate.

With the methods available to date, basecalling raw signals ob-
tained from the sequencers to convert signals to the base domain,
followed by using optimized alignment tools such as Minimap2
(the approach described in Readfish), is the most practical ap-
proach if large genomes are involved because base-level aligners
have matured over the past decade of research and development
and are highly optimized to make base-level selective sequencing
practical. However, for basecalling, regardless of the GPU acceler-
ation effort performed by ONT over the years, basecalling is still
the major bottleneck for base-domain selective sequencing, tak-
ing 96% of the execution time for Guppy fast basecalling + Min-
imap?2. Furthermore, basecalling is not portable or scalable due to
the compute power constraints, and if selective sequencing is ever
to be done on an integrated chip within the sequencer, basecall-
ing approaches would require a more costly system and possibly
come at a much larger form factor.

The goal of signal-level selective sequencing is to completely
bypass the basecalling step and, instead, directly map the raw sig-
nal to the reference. This is an emerging and immature field and
will inevitably require a substantial period of time to achieve the
same level of maturity as base-level selective sequencing. Since
the concept of nanopore selective sequencing was introduced, a
range of different signal-level selective sequencing methods has
been explored, including RUscripts [11], cwDTW [17], UNCALLED
[15], sigmap [16], and, more recently, RawHash [21], DTWax [46],
and RawMap [47].

In addition, directly passing raw signals into neural networks
is also being explored as opposed to using classical algorithms
for mapping, including works such as SquiggleNet [20], DeepSe-
lectNet [19], and RISER [48]. However, neural network-based ap-
proaches are currently limited to classifying reads between 2 tar-
get species, and getting mapping coordinates is not yet possi-
ble. Moreover, neural network-based methods require training the
model for each dataset, which makes it less flexible and requires
more preparation than the classical approaches.

The data rate of nanopore sequencers is comparable to modern
camera sensors on mobile devices today. Considering the amount
of raw signal processing being performed for sensors on mobile
devices, it is promising to envision signal-level nanopore selec-
tive sequencing done efficiently within nanopore sequencers, if
this level of miniaturization is ever reached for selective sequenc-
ing compute requirements. In summary, signal-level selective se-
quencing is an exciting area worth investigating together with
base-level selective sequencing.

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

Limitations and future work

In our proof-of-concept implementation of HARU, the reference
sequence is first loaded onto the FPGA’s on-chip memory (block
RAM) at the beginning of the execution. During alignment, the
PE chain streams the reference samples from the block RAM to
the first PE (Fig. 12). On-chip memory (block RAM) on the Xilinx
Kria board used for evaluation is limited to 5.1 MB, thus limit-
ing the maximum reference sequence size to 295 kilo-bases. To
eliminate this limitation, future work could directly stream the
reference together with the query sequence before each sDTW
call (there is currently an experimental branch for this; see Sup-
plementary Note 2). However, even with HARU (linear time com-
plexity for sDTW), performing sDTW of a query on a gigabase-
sized genome like the human genome is impractical (estimated
to take 3 seconds for a query). Nevertheless, when processing
gigabased-sized genomes, HARU is intended to be used in the fi-
nal refinement step when potential mapping locations (a few ref-
erence sequence segments that are small in size) are first found
using a heuristic method. Such a heuristic method that can cur-
rently map nanopore signals directly to gigabased-sized genomes
does not exist. However, methods such as Sigmap [16], UNCALLED
[15], and RawHash [21] are already setting the foundation for scal-
able direct signal mapping.

Future work can also improve the throughput by implement-
ing multiple parallel sSDTW cores for coarse-grain parallelism. Our
sDTW processor uses less than 20% of the LUT resources of the
FPGA, as mentioned in the “Resource utilization” section. Thus, re-
sources are sufficient to fit multiple parallel processors, increasing
the theoretical throughput. A high-end FPGA board with a larger
area could support even more processors; for instance, Xilinx’s
Versal VP2802 FPGA has sufficient resources to theoretically fit 140
parallel processors (see Supplementary Note 2 for experimental
explorations of deploying 4 accelerators in HARU). However, such
work also would require eliminating other bottlenecks that would
arise. For instance, the 30% of execution time currently spent on
the signal preprocessing (Fig. 6) would then become a bottleneck
and require acceleration.

Our implementation of HARU loads raw signal from the BLOWS
file format because the slow5lib library is lightweight (with min-
imal dependencies), thus easily allowing the cross-compilation
to target the Kria platform. Running MinKNOW on the Kria plat-
form is theoretically possible but is far from practical due to be-
ing closed source. Even if MinKNOW were open source, potential
issues with hundreds of bulky dependencies would make cross-
compilation impractical. Potential workarounds could include a
server—client approach where MinKNOW runs on a laptop and
communicates with the Kria board using ethernet. However, such
workarounds are not ideal due to network communication over-
heads. Also, latency in the public-facing ReadUntil API provided
by ONT (in Python programming language) would negate the mas-
sive benefit of hardware acceleration.

Our proof-of-concept HARU implementation is currently lim-
ited to DNA on R9.4 chemistry. Future work could focus on extend-
ing selective RNA sequencing, the most recent R10.4 chemistry, or
upcoming protein sequencing from ONT.

The primary sequencer device targeted for HARU running on
resource-constrained devices is the palm-sized MinION nanopore
sequencer. Sequencers such as ONT’s PromethION provide a
much larger throughput than MInION and will vastly increase
the selective sequencing processing requirements. Future work
could explore the scalability of HARU on higher-end FPGAs with
high bandwidth memory and more resources for fast selective

Hardwz

Accelerated ReadUntil | 13

sequencing on high-throughput sequencers such as the Prome-
thION.

Related hardware acceleration work

Existing hardware acceleration work targeting the subsequence
search problem using the DTW algorithm family is rare. Previous
FPGA accelerators such as [49, 50] implement a cDTW accelera-
tor to compute the distance score between a query and a win-
dow buffer that stores a subset of the reference sequence. The
reference sequence is continuously streamed into the window af-
ter each cDTW compute iteration completes, shifting older sam-
ples out. A distance score that is below a preset threshold indi-
cates a match between the query and the current reference sub-
sequence in the window buffer. Other work [49] focused on ex-
ploiting coarse-grain parallelism by computing multiple cDTW in
parallel, and [50] introduced a PE-ring structure that computes
multiple recurrence equations in parallel where the PEs compute
cells that do not share data dependencies. This windowed cDTW
approach is suitable for reference sequences of undetermined ar-
bitrary length. Still, it is inefficient (requires N x O(M?) for soft-
ware approaches) for selective sequencing usage where the ref-
erence sequence is static with a known length. sDTW, on the
other hand, is a data-reusing version of the approach, and our
work exploits the fine-grain parallelism that computes the whole
O(M) dimension in parallel, leaving O(M + N) computational time
and O(M) space. Furthermore, there is prior work that accelerates
DTW using nonvolatile memories [51] and using GPU acceleration
[52,53].

For the hardware acceleration on signal-alignment Read Until,
the only previous attempt was a simulated Application Specific
Integrated Circuit (ASIC) design that accelerates the sDTW algo-
rithm [18]. The proposed accelerator uses the unprocessed raw
signal reads to map directly with the reference, which requires
2,000 PEs to perform the matching and has a reference limit of
100 KB. The design has extensive resource requirements, mak-
ing it difficult to fit on lower-cost reconfigurable hardware, thus
targeting ASIC. Furthermore, as seen in the history of Read Until
[11, 13, 27], Read Until requires implementations to adapt quickly
as nanopore sequencing technology improves, and the cost of re-
manufacturing ASICs would be unsustainable. In contrast, HARU
is a complete design with an efficient software processing layer
using the sDTW accelerator. Our presented accelerator requires
only 250 resource-efficient PEs due to preprocessing, reducing the
query size needed in the high-throughput computation of sDTW,
and is capable of executing selective sequencing with low-cost
embedded MPSoC platforms with on-chip reconfigurable hard-
ware.

Conclusion

Existing sDTW-based software methods for nanopore selective se-
quencing are highly computationally intensive, and a large work-
station cannot keep up with a portable MinION sequencer. In this
article, we present HARU, a resource-efficient design that enables
sDTW-based selective sequencing on a low-cost and portable het-
erogeneous system comprising an ARM processor and an FPGA,
which is around 85x faster than the original sDTW-based soft-
ware implementation and around 2.5x faster than a highly opti-
mized software version running on a server with a 36-core Xeon
processor for a complete SARS-CoV-2 dataset. The energy-delay
product for the server is around 650x higher than HARU execut-
ing on an embedded device.

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

14 | GigaScience, 2023, Vol. 12, No. 0

Availability of Source Code and
Requirements

HARU

® Project name: HARU

® Description: Source code for the HARU accelerator, including
the Verilog HDL core accelerator and user-space device driver

® Project homepage: https://github.com/beebdev/HARU

® Operating system(s): Windows 10/11 (building), Custom Em-
bedded Linux image built with PetalLinux 2021.1 (running)

® Programming language: Verilog, C, Python

® Other requirements: Vivado 2022.2, Petalinux 2021.1

® License: MIT

® biotools:haru

® RRID: SCR_023563

Sigfish-HARU

® Project name: Sigfish-HARU

® Description: Source code that demonstrates the proof-of-
concept integration of HARU accelerator for squiggle map-
ping. Also contains the optimized RUscripts implementation
in C.

® Project homepage: https://github.com/beebdev/sighish-haru

® Operating system(s): Linux (building), embedded Linux built
with PetaLinux 2021.1 (running)

® Programming language: C

® Other requirements: Cross-compilation
AARCH64

® License: MIT

toolchain for

RUscripts-R9

® Project name: RUscripts-R9

® Description: The modified RUscripts to support Python 3.6+,
BLOWS format, and ONT’s current nanopore chemistry R9.4

® Project homepage: https://github.com/beebdev/RUscripts-R9

® Operating system(s): Platform independent

® Programming language: Python

® Other requirements: Python 3.6

® License: MIT

Data availability

Datasets used for the benchmarks are available to be directly
downloaded via the Zenodo repository, Zenedo [54], which we cu-
rated from publicly available datasets: [55] (associated with pub-
lication [45]) and NCBI accession SRX11368475 (associated with
publication [41]). An archival copy of the code and support-
ing data is also available via the GigaScience repository, GigaDB
[56].

Additional Files

Supplementary Fig. S1.1. DTW score cutoff threshold versus ac-
curacy.

Supplementary Fig. S1.2. DTW score distribution of positive and
negative mappings.

Supplementary Fig. S2. Impact of query length and prefix trim
length on accuracy.

Supplementary Fig. S3. sDTW accelerator modeled using 32-bit
floating point.

Supplementary Fig. S4. sDTW accelerator modeled using 32-bit
fixed point.

Supplementary Fig. S5. sSDTW accelerator modeled using 16-bit
fixed point.

Supplementary Fig. S6. Postimplementation power-analysis in-
formation of Kria with a single accelerator HARU.
Supplementary Table S1. Post-implementation utilisation for
HARU system with single dynamic reference streaming acceler-
ator.

Supplementary Table S2. Postimplementation utilization
for HARU system with 4 dynamic reference streaming
accelerators.

Supplementary Table S3. Comparison between HARU and DeepS-
electNet.

Supplementary Table S4. DeepSelectNet mapping results of
SARS-CoV-2 and yeast.

Supplementary Table S5. Comparison between HARU and
Guppy_fast + Minimap?2.

Supplementary Table S6. Guppy_fast + Minimap2 mapping re-
sults of SARS-CoV-2 and yeast.

Supplementary Table S7. Comparison between HARU and UN-
CALLED.

Supplementary Table S8. Resource utilization for SquiggleFilter’s
submodules.

Supplementary Table S9. Resource utilization for Kria with HARU
deployed in programmable logic (PL).

Supplementary Table S10. Resource utilization of HARU’s SDTW
accelerator (experimental reference streaming).

Abbreviations

APL: Application Programming Interface; ASIC: Application-
Specific Integrated Circuit; AXI: Advanced eXtensive Interface;
cDTW: classical dynamic time warping; CLB: configurable logic
block; CPU: central processing unit; DDR: double data rate; DMA:
direct memory access; DTW: dynamic time warping; FPGA: field-
programmable gate array; GPU: graphics processing unit; HDL:
Hardware Descriptive Language; HPC: high-performance comput-
ing; LUT: lookup table; MAPQ: mapping quality; MPSoC: mul-
tiprocessor system-on-chip; ONT: Oxford Nanopore Technolo-
gles; PE: processing element; RAM: random access memory;
sDTW: subsequence dynamic time warping; TDP: thermal design
power.

Competing interests

H.G. has received travel and accommodation expenses to speak
at Oxford Nanopore Technologies conferences. The other authors
declare no other competing interests.

Funding

H.G. is supported by Australian Research Council DECRA Fellow-
ship DE230100178.

Authors’ contributions

H.G., H.S., and S.P. conceived the work. P.S. and H.S. designed and
implemented the hardware accelerator. P.S. designed and imple-
mented the device driver. H.G. designed and implemented the
optimized multithreaded signal mapping software (sigfish). P.S.
drafted the manuscript. H.G. and S.P. revised the manuscript. H.G.
and P.S. devised the experiments and benchmarks. P.S. conducted
the experiments and benchmarks. All authors read and approved
the manuscript.

202 Yotely L1 uoisanb Aq 80/ 12./90pelb/eousiosebib/ce0l 01 /1op/alonie/eousiosebib/woo dnoolwepeose//:sdiy wolj papeojumoq

https://github.com/beebdev/HARU
https://github.com/beebdev/sigfish-haru
https://github.com/beebdev/RUscripts-R9

Acknowledgments

We gratefully acknowledge the invaluable knowledge shared by
our colleagues James M. Ferguson, Ira W. Deveson, Igor Ste-
vanovski and Jillian Hammond in the fields of nanopore signals
and biological samples.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Stevanovski I, Chintalaphani SR, Gamaarachchi H, et al. Com-
prehensive genetic diagnosis of tandem repeat expansion disor-
ders with programmable targeted nanopore sequencing. Sci Adv
2022;8(9):eabm5386.

Miller DE, Sulovari A, Wang T, et al. Targeted long-read sequenc-
ing identifles missing disease-causing variation. Am] Hum
Genet 2021;108(8):1436-49.

Djirackor L, Halldorsson S, Niehusmann P, et al. Intraop-
erative DNA methylation classification of brain tumors im-
pacts neurosurgical strategy. Neurooncol Adv — 2021;3(1):
vdab149.

Yamaguchi K, Kasajima R, Takane K, et al. Application of tar-
geted nanopore sequencing for the screening and determination
of structural variants in patients with Lynch syndrome.] Hum
Genet 2021;66(11):1053-60.

Wang M, Fu A, Hu B, et al. Nanopore targeted sequencing for the
accurate and comprehensive detection of SARS-CoV-2 and other
respiratory viruses. Small 2020;16(32):2002169.

Marquet M, Zollkau J, Pastuschek J, et al. Evaluation of micro-
biome enrichment and host DNA depletion in human vaginal
samples using Oxford Nanopore’s adaptive sequencing. Sci Rep
2022;12(1):1-10.

Martin S, Heavens D, Lan Y, et al. Nanopore adaptive sampling: a
tool for enrichment of low abundance species in metagenomic
samples. Genome Biol 2022;23(1):1-27.

QuickJ, Loman NJ, Duraffour S, et al. Real-time, portable genome
sequencing for Ebola surveillance. Nature 2016;530(7589):
228-32.

Mclntyre AB, Rizzardi L, Yu AM, et al. Nanopore sequencing in
microgravity. NPJ Microgravity 2016;2(1):1-9.

Samarakoon H, Punchihewa S, Senanayake A, et al. Genopo: a
nanopore sequencing analysis toolkit for portable Android de-
vices. Commun Biol 2020;3(1):1-5.

Loose M, Malla S, Stout M. Real-time selective sequencing using
nanopore technology. Nat Methods 2016;13(9):751-4.

Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing
technology, bioinformatics and applications. Nat Biotechol
2021;39(11):1348-65.

Payne A, Holmes N, Clarke T, et al. Readfish enables targeted
nanopore sequencing of gigabase-sized genomes. Nat Biotechol
2021;39(4):442-50.

Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34(18):3094-100.

Kovaka S, Fan Y, Ni B, et al. Targeted nanopore sequencing by
real-time mapping of raw electrical signal with UNCALLED. Nat
Biotechol 2021;39(4):431-41.

Zhang H, Li H, Jain C, et al. Real-time mapping of nanopore raw
signals. Bioinformatics 2021;37(Suppl. 1):1477-83.

Han R, Li Y, Gao X, et al. An accurate and rapid continu-
ous wavelet dynamic time warping algorithm for end-to-end
mapping in ultra-long nanopore sequencing. Bioinformatics
2018;34(17):1722-31.

Dunn T, Sadasivan H, Wadden J, et al. SquiggleFilter: an ac-
celerator for portable virus detection. In: MICRO-54: 54th An-

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Hardware Accelerated ReadUntil | 15

nual IEEE/ACM International Symposium on Microarchitec-
ture. Virtual Event, Greece: ACM, City of publication; 2021:
535-49.

Senanayake A, Gamaarachchi H, Herath D, et al. DeepSelect-
Net: deep neural network based selective sequencing for oxford
nanopore sequencing. BMC Bioinformatics 2023;24(1):31.

Bao Y, Wadden J, Erb-Downward JR, et al. SquiggleNet: real-
time, direct classification of nanopore signals. Genome Biol
2021;22:1-16.

Firtina C, Ghiasi NM, Lindegger J, et al. RawHash: enabling fast
and accurate real-time analysis of raw nanopore signals for
large genomes. bioRxiv 2023. https://www.biorxiv.org/content/
10.1101/2023.01.22.525080v1.

Jain M, Koren S, Miga KH, et al. Nanopore sequencing and as-
sembly of a human genome with ultra-long reads. Nat Biotechol
2018;36(4):338-45.

Deamer D, Akeson M, Branton D. Three decades of nanopore
sequencing. Nat Biotechol 2016;34(5):518-24.

Petersen LM, Martin IW, Moschetti WE, et al. Third-generation
sequencing in the clinical laboratory: exploring the advan-
tages and challenges of nanopore sequencing. J Clin Microbiol
2019;58(1):e01315-19.

Logsdon GA, Vollger MR, Eichler EE. Long-read human genome
sequencing and its applications. Nat Rev Genet 2020;21(10):
597-14.

Wick RR, Judd LM, Holt KE. Performance of neural network
basecalling tools for Oxford Nanopore sequencing. Genome Biol
2019;20(1):1-10.

Edwards HS, Krishnakumar R, Sinha A, et al. Real-time selective
sequencing with RUBRIC: read until with basecall and reference-
informed criteria. Sci Rep 2019;9(1):1-11.

Ulrich JU, Lutfi A, Rutzen K, Renard BY. ReadBouncer: precise and
scalable adaptive sampling for nanopore sequencing. Bioinfor-
matics 2022;38:(1)i153-1160. https://doi.org/10.1093/bioinforma
tics/btac223.

Guo L, Lau J, Ruan Z, et al. Hardware acceleration of long read
pairwise overlapping in genome sequencing: a race between
FPGA and GPU. In: 2019 IEEE 27th Annual International Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM). San Diego, CA, USA: IEEE, Conference; 2019:127-35.
Liyanage K, Gamaarachchi H, Ragel R, et al. Cross layer design
using HW/SW co-design and HLS to accelerate chaining in ge-
nomic analysis. IEEE Trans Comput Des Integr Circuits Syst 2023.
https://ieeexplore.ieee.org/document/10015864.

Kruskal JB. An overview of sequence comparison: Time warps,
string edits, and macromolecules. SIAM Rev 19 83;25(2):201-37.
Mtller M. Information retrieval for music and motion. Vol. 2.
Heidelberg; Springer; 2007:69-84.

Juang BH. On the hidden Markov model and dynamic time warp-
ing for speech recognition—a unified view. AT&T Bell Lab Tech
719 84;63(7):1213-43.

Tuzcu V, Nas S. Dynamic time warping as a novel tool in pat-
tern recognition of ECG changes in heart rhythm disturbances.
In: 2005 [EEE International Conference on Systems, Man and Cy-
bernetics.Vol. 1. Waikoloa, HI: IEEE; 2005:182-6.

Albanese D, Visintainer R, Merler S, et al. mlpy: Machine learning
python. arXiv preprint arXiv:12026548 2012. https://arxiv.org/ab
s/1202.6548.

Keogh E, Wei L, Xi X, et al. LB_Keogh supports exact indexing
of shapes under rotation invariance with arbitrary representa-
tions and distance measures. In: Proceedings of the 32nd In-
ternational Conference on Very Large Data Bases. Seoul, Korea:
VLDB Endowment; 2006:882-93.

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

https://www.biorxiv.org/content/10.1101/2023.01.22.525080v1
https://doi.org/10.1093/bioinformatics/btac223
https://ieeexplore.ieee.org/document/10015864
https://arxiv.org/abs/1202.6548

16

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

| GigaScience, 2023, Vol. 12, No. 0

Lemire D. Faster retrieval with a two-pass dynamic-time-
warping lower bound. Pattern Recog 2009;42(9):2169-80.

Sakoe H, Chiba S. Dynamic programming algorithm optimiza-
tion for spoken word recognition. IEEE Trans Acoust Speech Sig
Process 19 78;26(1):43-9.

Itakura F. Line spectrum representation of linear predictor coef-
ficients of speech signals.] Acoust Soc Am 19 75;57(Suppl. 1):S35.
Gamaarachchi H, Parameswaran S, Smith MA. Featherweight
long read alignment using partitioned reference indexes. Sci Rep
2019;9(1):4318.

Gamaarachchi H, Samarakoon H, Jenner SP, et al. Fast
nanopore sequencing data analysis with SLOWS. Nat Biote-
chol 2022:40:1026-1029. https://doi.org/10.1038/s41587-021-011
47-4.

Li H, Handsaker B, Wysoker A, et al
alignment/map format and SAMtools.
2009;25(16):2078-9.

Gamaarachchi H, Lam CW, Jayatilaka G, et al. GPU accel-
erated adaptive banded event alignment for rapid compara-
tive nanopore signal analysis. BMC Bioinformatics 2020;21(1):1-
13.doi: 10.1186/512859-020-03697-x.

Simpson JT, Workman RE, Zuzarte P, et al. Detecting DNA cy-
tosine methylation using nanopore sequencing. Nat Methods
2017;14(4):407-10.

Rodriguez-Morales AJ, Gallego V, Escalera-Antezana JP, et al.
COVID-19 in Latin America: the implications of the first
confirmed case in Brazil. Travel Med Infect Dis 2020;35:
101613.

Sadasivan H, Stiffler D, Tirumala A, et al. Accelerated dynamic
time warping on GPU for selective nanopore sequencing. bioRxiv
2023: 2023-03. https://www.biorxiv.org/content/10.1101/2023.0
3.05.531225v2.

Sadasivan H, Wadden J, Goliya K, et al. Rapid Real-time Squiggle
Classification for Read until using RawMap. Archives of Clinical
and Biomedical Research 2023;7:45-57. https://www.biorxiv.org/
content/10.1101/2022.11.22.517599v2.

The sequence
Bioinformatics

48.

49.

50.

51.

52.

53.

54.

55.

56.

Sneddon A, Ravindran A, Hein N, et al. Real-time biochemical-
free targeted sequencing of RNA species with RISER. bioRxiv
2022: 2022-11. https://www.biorxiv.org/content/10.1101/2022.1
1.29.518281v1.

Sart D, Mueen A, Najjar W, et al. Accelerating dynamic time
warping subsequence search with GPUs and FPGAs. In: 2010 IEEE
International Conference on Data Mining. Sydney, NSW, Aus-
tralia: IEEE, Conference; 2010:1001-6.

Wang Z, Huang S, Wang L, et al. Accelerating subsequence sim-
ilarity search based on dynamic time warping distance with
FPGA. In: Proceedings of the ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays. Monterey, California,
USA: ACM; 2013:53-62.

Fernandez I, Manglik A, Giannoula C, et al. Accelerating time se-
ries analysis via processing using non-volatile memories. arXiv
preprint arXiv:221104369. 2022. https://arxiv.org/abs/2211.043
69.

Schmidt B, Hundt C. cuDTW++: ultra-fast dynamic time warp-
ing on CUDA-enabled GPUs. In: Euro-Par 2020: Parallel Process-
ing: 26th International Conference on Parallel and Distributed
Computing, Warsaw, Poland, August 24-28, 2020, Proceedings 26.
Warsaw, Poland: Springer-Verlag; 2020:597-612.

Hundt C, Schmidt B, Schomer E. Cuda-accelerated alignment of
subsequences in streamed time series data. In: 2014 43rd In-
ternational Conference on Parallel Processing. Minneapolis, MN,
USA: IEEE, Conference; 2014:10-19.

Shih PJ, Saadat H, Parameswaran S, et al. Efficient real-time
selective genome sequencing on resource-constrained devices
[Data set]. Zenodo. 2022. https://doi.org/10.5281/zenodo.7314838.
Links to raw (FASTS5/FASTQ) data for ARTIC protocol. 2020.
https://community.artic.network/t/links-to-raw-fast5-fastqg-d
ata-for-artic-protocol/17 Accessed 22 June 2022.

Shih PJ, Saadat H, Parameswaran S, et al. Supporting data for
“Efficient Real-Time Selective Genome Sequencing on Resource-
Constrained Devices.” GigaScience Database. 2023. http://dx.doi
.0rg/10.5524/102396.

Received: November 19, 2022. Revised: April 11, 2023. Accepted: June 2, 2023
© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

20z UdJe |1 uo isenb Aq $80/1zZ//9v0peib/eouaiosebib/es0 L 0 L/10p/alomue/aousiosebib/uod dnooiwapese//:sdiy woly papeojumoq

https://doi.org/10.1038/s41587-021-01147-4
https://www.biorxiv.org/content/10.1101/2023.03.05.531225v2
https://www.biorxiv.org/content/10.1101/2022.11.22.517599v2
https://www.biorxiv.org/content/10.1101/2022.11.29.518281v1
https://arxiv.org/abs/2211.04369
https://doi.org/10.5281/zenodo.7314838
https://community.artic.network/t/links-to-raw-fast5-fastq-data-for-artic-protocol/17
http://dx.doi.org/10.5524/102396
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Background
	Results
	Methods
	Discussion
	Conclusion
	Availability of Source Code and Requirements
	Data availability
	Additional Files
	Abbreviations
	Competing interests
	Funding
	Authors contributions
	Acknowledgments
	References

