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Abstract 

Bac kgr ound: Third-gener ation nanopore sequencers offer selecti v e sequencing or “Read Until” that allows genomic reads to be ana- 
l yzed in r eal time and a bandoned halfw ay if not belonging to a g enomic reg ion of “inter est.” This selecti v e sequencing opens the door 
to important applications such as rapid and low-cost genetic tests. The latency in analyzing should be as low as possible for selective 
sequencing to be effecti v e so that unnecessary reads can be rejected as early as possible . How ever, existing methods that employ a 
subsequence dynamic time warping (sDTW) algorithm for this pr ob lem ar e too computationall y intensi v e that a massi v e workstation 

with dozens of CPU cores still struggles to keep up with the data rate of a mobile phone–sized MinION sequencer. 

Results: In this article , w e pr esent Hardw ar e Accelerated Read Until (HAR U), a r esource-efficient hardw ar e–softw ar e codesign- 
based method that exploits a low-cost and porta b le heter ogeneous m ultipr ocessor system-on-chip platform with on-chip field- 
pr ogramma b le gate arrays (FPGA) to accelerate the sDTW-based Read Until algorithm. Experimental results show that HARU on a 
Xilinx FPGA embedded with a 4-cor e ARM pr ocessor is ar ound 2.5 × faster than a highly optimized multithreaded software version 

(around 85 × faster than the existing unoptimized m ultithr eaded softw ar e) running on a sophisticated server with a 36-core Intel 
Xeon processor for a SARS-CoV-2 dataset. The energy consumption of HARU is 2 orders of magnitudes lower than the same applica- 
tion executing on the 36-core server. 

Conclusions: HAR U demonstrates that nanopor e selecti v e sequencing is possible on resour ce-constr ained devices through rigorous 
hardw ar e–softw ar e optimizations. The source code for the HARU sDTW module is av aila b le as open source at https://github.com/bee 
bdev/HARU , and an example application that uses HARU is at https://github.com/beebdev/sigfish-haru . 

Ke yw ords: selecti v e sequencing, adapti v e sampling, nanopor e, subsequence dynamic time w arping, FPGA, hardw ar e acceleration, 
edge computing 
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Key Points 

� Har dw ar e-acceler ated signal-matc hing Read Until de- 
signed for r esource-constr ained embedded platforms. 

� A resource-efficient subsequence dynamic time warping 
(sDTW) accelerator for selective sequencing. 

� Full proposed design (software processing layer, devices 
dri vers, hard war e sDTW acceler ator): https://github.c 
om/beebdev/HARU 

� Example application using HARU and optimized C im- 
plementation of RUscripts: https://github.com/beebdev 
/sigfish-haru . 

� Modified RUscripts (supports Python 3.6 + , BLOW5 for- 
mat, ONT’s R9.4 c hemistry): https://github.com/beebde v 
/RUscripts-R9 . 
Recei v ed: November 19, 2022. Revised: April 11, 2023. Accepted: June 2, 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
ntroduction 

he latest third-generation nanopore sequencing technology has 
 e volutionized the field of genomics . T he portable palm-sized
anopore sequencer called the MinION produced by Oxford 

anopor e Tec hnologies (ONT) can perform dir ect selectiv e se-
uencing, whic h r ejects the genomic reads that are not of inter-
st. T his technique , also known as Read Until, can v astl y r educe
he sequencing time and cost for applications such as genetic dis-
ase identification [ 1 , 2 ], cancer detection [ 3 , 4 ], and the surveil-
ance of viruses (e.g., SARS-CoV-2) and other pathogens [ 5 , 6 ], as
ell as sequencing low-abundance species metagenomics sam- 
les [ 7 ]. Ho w e v er, the r eal-time anal ysis of genomic r eads involv es
he complex and time-consuming process of aligning the read to
he r efer ence to obtain the position information. Ideall y, the r eal-
ime analysis should be performed on a lo w-cost, lo w-po w er, and
ortable device [ 8–10 ], which is the aim of this article. 

Existing alignment methods for selective sequencing use high- 
erformance computing systems to meet the real-time processing 
 equir ement, compr omising portability, cost-effectiv eness, and 
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o w er efficienc y. The v ery first nanopor e selectiv e sequencing
ethod tackled the alignment problem directly in signal do-
ain [ 11 ]. It used subsequence dynamic time warping (sDTW) for di-

 ect signal ma pping for the earl y R7 nanopor e c hemistry, whic h
ould sequence at a speed of 70 bases/s. Ho w e v er, with the intr o-
uction of the R9 nanopor e c hemistry with a 450 bases/s speed
 12 ], sDTW-based Read Until could not k ee p up with a portable
alm-sized MinION sequencer, e v en when running on a 22-cor e
igh-performance computing (HPC) system. The sDTW computa-
ion alone takes more than 98% of the total runtime. 

The current base-domain Read Until implementations [ 13 ] first
onv ert signal r eads to bases using GPU-accelerated basecallers
nd then map them to the reference base sequence using se-
uence mapping techniques (e.g., Minimap2 [ 14 ]). Although the
a pping tec hniques in the base domain ar e optimized and ma-

ured in the bioinformatics field, the prerequisite basecalling step
s compute-intensive and is a significant bottleneck for Read Until
mplementations. To k ee p up with the sequencing rate, the execu-
ion of basecalling r equir es high-end GPU har dw are (NVIDIA R TX
080 for simple r efer ence tar gets [ 13 ] and NVIDIA RTX 3090 for
ore complex targets [ 1 ]), which makes selective sequencing ex-

ensive, po w er-hungry, nonportable, and nonscalable. Ther efor e,
 esearc hers hav e shown significant inter est in de v eloping meth-
ds to process the raw signals directly (to avoid this compute-
ntensive basecalling step), and it has become an active and grow-
ng r esearc h ar ea [ 11 , 15–21 ]. 

In this article, to addr ess the lac k of portability and costly exe-
ution nature of existing solutions, we aim to de v elop a portable,
o w-cost, and po w er-efficient solution for selective sequencing
n raw signal domain. We present Har dw are Accelerated Read
ntil (HARU) (Fig. 1 ), a softw are–har dw are codesign system for

aw signal-alignment Read Until that uses the memory-efficient
DTW har dw ar e acceler ator for high-thr oughput signal ma pping.

HARU primaril y tar gets low-cost, r esource-constr ained het-
r ogeneous m ultipr ocessor system-on-c hip (MPSoC) de vices with
n-c hip r econfigur able har dw ar e and performs efficient m ul-
ithr eaded batc h-pr ocessing for signal pr epar ation in conjunc-
ion with the sDTW accelerator. HARU tackles the computa-
ional bottleneck by accelerating the sDTW algorithm with field-
r ogr ammable gate arr a ys (FPGAs). T he memory-efficient sDTW
ccelerator for Read Until is designed by exploiting the fine-
r ained par allelism offer ed by the FPGA and has a computational
ime complexity of O ( M + N ). The sDTW accelerator is loaded onto
he on-chip FPGA and interfaced with the software application
hr ough softwar e driv ers. Sequenced r aw-signal samples ar e pr e-
r ocessed in softwar e befor e str eaming into the sDTW acceler ator

Fig. 1 ). Ma pping r esults of the signal ar e then r eturned to the a p-
lication through the software driver for postprocessing. 

We demonstrate that HARU gains around 85 × speedup against
he original software implementation mapping the SARS-CoV-2
equenced data on a 36-cor e HPC system. Furthermor e, w e sho w
hat HARU runs around 2.5 × faster than an optimized multi-
hr eaded softwar e implementation on the same 36-cor e serv er
nd around 6.5 × faster than the same software running on a 10-
or e Intel Cor e i9-10850K desktop. The ener gy consumption of
ARU is 341.7 × lo w er than the same application executing on the
6-cor e serv er. 

HARU is a complete system for selective sequencing that works
n off-the-shelf devices, as opposed to being a conceptual work
imited to simulation. For instance, one may purchase the targeted
evice used in this article (Xilinx’s Kria AI Starter Kit, which has
 quad-core ARM Cortex A53 with 4 GB of RAM and an on-chip
PGA), flash the device, and execute HARU. In its current form,
ARU is limited to kilobase-sized genomes. Ho w e v er, this is the
rst time a selective sequencing work is shown to be able to ex-
cute selective sequencing on such a lo w-po w er and lightweight
e vice and, mor e importantl y, running on off-the-shelf low-cost
ar dw are . HAR U demonstrates that selective sequencing can be
erformed efficiently on an edge device with an excellent price to
erformance-per-watt r atio. We belie v e this work will inspire the
ossibility of performing selective sequencing directly on a chip
ithin a nanopore sequencer. 
HARU can also be used as a fr ame work for other future work in-

ending to explore acceleration for selective sequencing on FPGAs
y replacing the sDTW core in HARU. As a stepping stone for such
rojects, this allows quick verification of the experimental core
r oducing pr actical r esults instead of being limited to using soft-
ar e sim ulation. We hav e pr ovided ste p-by-ste p instructions and
ocumentation on building the ov er arc hing system fr om scr atc h.
n addition, the interface to the accelerator is exposed as a library
o that the application layer source code can call the interface and
r eat the acceler ator as a blac k box. W e selected Xilinx’ s Kria AI
tarter Kit as the target reference device for HARU, with the in-
ention of HARU being used as a fr ame work for future developers
ocusing on similar genomics FPGA acceleration work. The xmu-
il tool on the Kria platform allows easy access to system perfor-

ance and information metrics as well as fast loading and replac-
ng of FPGA bitstreams, allowing users to quic kl y c hange har dw are
ccelerators for different applications without rebooting the sys-
em. Xilinx’s Kria supports tools such as Vitis HLS (C to HDL gen-
ration) and PYNQ (Python framework for Zynq MPSoCs), which
llo ws resear chers with limited har dw are backgrounds to design
ccelerators for their applications. 

ac kgr ound 

anopore selecti v e sequencing 

anopore sequencers from ONT are third-generation genomic se-
uencers that are capable of producing long reads (currently rang-

ng between 1 kilobases to > 2 megabases) [ 22 , 23 ] and are com-
erciall y av ailable at an affordable price compar ed to sequencers

f other techniques and generations [ 24 ]. These ONT nanopore se-
uencers provide genomic reads through flow cells , which contain
 proprietary sensor arra y o ver nanopore channels embedded in
 synthetic membrane [ 25 ]. During the sequencing process, the
anopor e c hannels ca ptur e the electric curr ent c hange caused by
he genome molecules’ ionic current when it passes through [ 25 ].
his current signal trace is streamed to the sequencer software

n real time and can later be basecalled into the corresponding
 ucleobase re presentation for later analysis [ 26 ]. 

A feature of ONT nanopore sequencers is the direct selective
equencing capability. These sequencers provide real-time data
utput streams and allow the rejection of reads at individual
anopor e c hannels [ 11 , 13 ]. This means the sequenced data can
e analyzed during the sequencing and rejected before comple-
ion if decided it is not of inter est. This selectiv e sequencing pro-
ess in the nanopore sequencing w orkflo w is kno wn as Read Un-
il . ONT provides the Read Until Application Pr ogr amming Inter-
ace (API) interface for software applications to access and reject
he sequenced reads in real time. A rejection made through the
PI call will e v entuall y be passed back to the sequencer. The volt-
ge at the indicated channel will be reversed to eject the genomic
olecule out of the nanopore [ 11 ]. 
For the Read Until execution to be effective, the round-trip

ask latency for read acquisition, analysis, and rejection signal
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Figur e 1: HAR U o v ervie w. 
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forw ar ding should be completed before the majority of the sub- 
ject read is sequenced by the nanopore sequencer [ 11 ]. Rejections 
made after most of the strand is sequenced bring no benefit as 
no sequencing time is saved. Existing Read Until methods per- 
form analysis by aligning the genomic reads to the target refer- 
ence and making the rejection decision based on the position and 

distance score . T his alignment can be done using either signal or 
base alignment [ 11 , 13 , 15 , 16 , 27 , 28 ]. 

Signal-alignment Read Until 
Signal-alignment Read Until aligns raw signal reads with the refer- 
ence to obtain the alignment position and distance score, as seen 

in Fig. 2 A. Refer ence sequences usuall y ar e obtained in base r ep- 
resentation (in the base equivalent “ACGT ” characters) and need 

to be converted to a synthetic signal representation before be- 
ing used to map the reads . T his can be done using the k -mer 
model, which slides a window size of k bases over the base ref- 
erence while the bases in the window are mapped to a value us- 
ing the k -mer model hash-map (see Fig. 2A ). The obtained align- 
ment position and score are then used to determine if a rejec- 
tion should be made, which is custom to a pplication usa ge . T his 
signal-alignment w orkflo w w as first sho wn b y Loose et al. [ 11 ] in 

the RUscripts work, which is also the first Read Until implementa- 
tion introduced. RUscripts is a Python implementation that uses 
the sDTW algorithm to align initial segments of the raw signals to 
the synthetic r efer ence and can match 1 read every 0.3 seconds 
on a single CPU core [ 11 ]. At the time of the proposal, RUscripts 
could k ee p up with the 70-bases/s nanopore sequencing rate on a 
22-cor e serv er [ 11 ]. Ho w e v er, as sequencing speed impr ov ed ov er
the years, the current 450-bases/s sequencing rate [ 12 ] surpassed 

RUscripts’s capability of performing Read Until during sequenc- 
ing. We observed that 98% of processing time is spent processing 
the O ( MN ) sDTW algorithm. 

Base-alignment Read Until 
As signal-aligning Read Until could not k ee p up with impr ov ed 

sequencing rates due to sDTW, r esearc hers turned the focus of 
Read Until w orkflo ws to w ar d base-domain techniques [ 13 , 27 ].
These techniques align the genomic reads in the base domain 

as opposed to the signal domain, which requires an extra step 

of basecalling the signal to base sequences in real time before 
alignment (see Fig. 2B ). Thanks to well-optimized multistate align- 
ment implementations such as Minimap2 [ 14 ] and the propri- 
etary GPU-accelerated basecaller Guppy from ONT, it can out- 
speed the sequencing rate to save time. Recent FPGA accelera- 
ion work on Minimap2 [ 29 , 30 ] could further speed up the base-
e v el alignment. Yet, the extensiv e po w er usage and the need
or high-performance GPUs and CPUs for basecalling make base- 
lignment Read Until expensive and nonportable [ 1 ]. 

otential for signal-alignment Read Until 
lignment in the signal domain and alignment in the base do-
ain share high similarities in their algorithms and mainly dif-

er in the sequence r epr esentation [ 31 ]. Though base-alignment
ethods are fast and can k ee p up with current sequencing rates

 1 , 13 ], basecalling is a bottleneck in current base-alignment Read
ntil methods . T hus , we hypothesize that signal-domain Read Un-

il could r eac h better performance if enough optimization and ac-
eleration work is applied to signal alignment as it does not re-
uire the additional basecalling step. In this w ork, w e r e vitalize
he direct signal approach by optimizing and exploiting hardware 
cceleration for the sDTW alignment methodology targeting low- 
ost embedded heterogeneous platforms, which also addresses 
he high cost of Read Until executions. 

ubsequence dynamic time warping 

he dynamic time warping algorithm family includes dynamic 
r ogr amming algorithms that provide optimal alignment and dis-
ance metrics between 2 given time series [ 32 ] and have been
idely used in pattern recognition applications in different fields 

 33 , 34 ]. This optimal alignment is ac hie v ed b y w arping the time-
eries samples (see Fig. 3A ), which is done by k ee ping an M × N
ized cost matrix. The classical DTW (cDTW) algorithm performs 
lobal alignment of the signals (see Fig. 3B ) [ 32 ], while the sDTW
lgorithm performs local alignment of the smaller sequence in 

he larger sequence (see Fig. 3 C) [ 35 ]. Read Until attempts to find
he local alignment of the query on the r efer ence and thus uses
DTW, which is elaborated as follows. 

DTW problem 

iven 2 sequences X of size M and Y of size N where 1 ≤ M ≤ N ∈ N ,
he sDTW distance is the summation of the distance in the opti-

al warp path w optimal . The warp paths considered are all the paths
hat align the sequence X with any subsequence of the sequence
 . The dynamic pr ogr amming form ulation of sDTW is based on
he r ecurr ence r elation of the following equation: 

γ (i, j) = δ(i, j) + min 

⎧ ⎪ ⎨ 

⎪ ⎩ 

γ (i − 1 , j) 
γ (i − 1 , j − 1) 
γ (i, j − 1) 

(1) 
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A

B

Figure 2: Ov ervie w of Read Until w orkflo ws. 
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Algorithm 1: Subsequence DTW 

Input : X[1 : M ] , Y[1 : N] , M , N 

Output: po sitio n , sco re 
1 C: cost matrix of size M ∗ N; 
2 score ← ∞ ; 
3 po sitio n ← −1 ; 
4 for j in range 1 to N do 
5 C [1 , j ] ← abs (X[1] − Y[ j]) ; 
6 end 
7 for i in range 2 to M do 
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9 end 
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21 end 
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here δ is the distance measure between samples and 1 ≥ i > M , 1
j > N . Distance measure metrics in DTW are not limited to a sin-

le method. Popular distance metrics include Euclidean distance,
quared Euclidean distance, and Manhattan distance . T he bound-
ry conditions for γ ( i , j ) include γ ( i , 0) = ∞ and γ (0, j ) = 0, and with
 bottom-up memoization, the γ values are stored in a cost matrix
 of size M × N (i.e., C [ i , j ] := γ ( i , j )). γ essentially chooses, at each
tep, the lo w est cost mo ve . In Equation 1 , γ ( i − 1, j ) indicates an
nsertion from sequence X into sequence Y , whereas γ ( i − 1, j − 1)
ndicates a match and γ ( i , j − 1) indicates a deletion . Once the cost

atrix C is populated, the cell with the minimum distance value
n the last ro w w ould be the ending position of the local align-

ent. Bac ktr ac king fr om the end position by, a gain, c hoosing the
tep with the lo w est cost among the same dependency will give
he optimal warp path and starting position (see Fig. 3C ). 

ime and space complexity 

he sDTW a ppr oac h is giv en in Algorithm 1. As shown, sDTW
s O ( MN ) in time and space complexity due to the 2-dimensional
earch space . T his has led to hea vy computational bottlenecks in
 pplications suc h as RUscripts discussed in the “Nanopore selec-
ive sequencing” section. To date, not many sDTW optimization

ethods exist, and cDTW optimizations such as lo w er bounding
 36 , 37 ] and a ppl ying global constr aints [ 38 , 39 ] do not bring many
enefits as the necessary search space is m uc h lar ger than just
he diagonal connecting start and end positions of the sequences.

esults 

verall system performance 

ig. 4 A compares the overall performance of HARU for mapping all
he 1.382 million reads of the SARS-CoV-2 dataset (see “Datasets”
ection) with softwar e-onl y implementations . T he y-axis of Fig. 4 A
s the signal mapping throughput (mapping throughput is the
xecution time divided by the number of reads in the dataset).
he first bar in Fig. 4 A r epr esents the original Python-based
Uscripts (see “Pure software implementations” section) running
n the HPC with all 36 cores (throughput: 12.52 reads/s). The last
ar r epr esents our HARU system with a thr oughput of 1,073.83
eads/s . T hus , our HAR U system is ∼85.8 × faster than the original
 Uscripts . T he second bar shows the optimized C implementation
f RUscripts (see “Pur e softwar e implementations” section) on the
esktop system with a 10-core i9 processor, and the throughput

s 162.29 reads/s (HARU is 6.6 × faster). Then, the third bar is for
he optimized C implementation run with all 36 Xeon cores on the
PC, and the throughput is 432.06 reads/second. T he HAR U sys-

em being implemented on a low-cost embedded FPGA system is
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A B

C

Figure 3: Illustration of DTW. 

A B

Figure 4: Mapping throughput for the selective sequencing. 
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Figure 5: sDTW task latency. 
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Figure 6: Process time breakdown. 

F igure 7: Accurac y against scaling factor. 
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till ∼2.49 × faster than the server. The fourth bar in Fig. 4 A is for
he optimized C implementation on the MPSoC run only on the
-cor e ARM CPU, whic h has a thr oughput of 11.09 r eads/s . T hus ,
ARU that uses the FPGA is 96.8 × faster than running on the ARM
rocessor alone. 

Similarl y, Fig. 4 B compar es the ov er all HARU performance for
apping all the 500,000 reads of the human dataset to the ref-

rence containing the RFC1 gene (see “Datasets” section). HARU
last bar) is 64.5 × faster than RUscripts on the 36-core HPC (first
ar); 5.8 × and 4.7 × faster than optimized C implementation on
he 10-core desktop (second bar) and 36-core HPC (third bar), re-
pectiv el y; and 66.2 × faster than the optimized C implementation
n a 4-core ARM processor (fourth bar) alone. 

Note that time measurement for the above throughput calcula-
ion for HARU includes all the o verheads , including reading signal
ata from the disk, raw signal preprocessing on software, and data
ransfer time to/from FPGA for HARU, with our FPGA implemen-
ation running at 100 MHz. The speedups observed for HARU over
ther systems in Fig. 4 A (SARS-CoV-2 r efer ence) ar e higher com-
ared to those in Fig. 4 B (RFC1 reference) because the RFC reads
r e lar ger (128 Kb) than the SARS-CoV-2 reads (29 Kb) as explained
elow. 

erformance of the sDTW over reference length 

ig. 5 shows how the performance of our sDTW core in HARU
xecuted on the FPGA (including the overhead for data transfer
o/from FPGA) and the pure software version of DTW executed on
he CPU varies over the reference length. The x-axis is the refer-
nce length on a number of bases on the log scale . T he y-axis is
he time taken for a single sDTW query. For the CPU (red curve),
his y-axis r epr esents the time for executing the sDTW function
n a single CPU thr ead, wher eas for the FPGA (blue curve), this is
he time for processing on the FPGA plus the data transfer to and
rom the FPGA. Observe in Fig. 5 how the gap between the 2 curves
ncreases with the reference length, which causes the speedup of
AR U o ver the CPU to increase with increased reference size . T his
ehavior is due to a band of cells being computed in parallel on
ar dw are using a processing elements (PE) chain (see “Resource-
fficient sDTW accelerator” section). 

he time breakdown for different processing 

teps 

ig. 6 compares the percentage of time spent on different process-
ng steps for HARU versus the optimized software implementation
n percentages. Due to the significant speedup of sDTW, the per-
entage of runtime spent on sDTW is < 64% for the SARS-CoV-2
ataset and > 46% for the RFC1 data set (top 2 bars), whereas this
as > 98% for software (bottom 2 bars). Note that “others” in Fig. 6

s the time spent loading data from the disk, r efer ence pr epar a-
ion, and writing the output. 

ccuracy 

ig. 7 shows the accuracy of the accelerator using different scal-
ng factors (discussed in the “Software processing layer” section).
ccuracy in Fig. 7 is calculated as a percentage of the number of
apping positions similar to results produced from sDTW com-

uted on software using 32-bit floating points. Observe that a scal-
ng factor of 2 yields a limited accuracy (80%), while increasing
he scaling factor gr aduall y conv er ges the accur ac y to w ar d 100%.
o w e v er, when scaled abov e 128, the distance cost accum ulation

esults in data overflow during sDTW, which largely impacts the
lignment accuracy. In HARU, we have used a scaling factor of 32
o pr e v ent ov erflow while having an accur acy close to 99%. Re-
er to Supplementary Note 1 for further information on using a
xed-point and a static scaling factor. 

nergy comparison 

ig. 8 shows the estimated energy efficiency (y-axis) plotted
gainst the execution time (x-axis) for HARU and optimized
oftwar e-onl y implementations on differ ent pr ocessors . HAR U’s
v er all performance and energy efficiency ar e consider abl y lo w er
close to the origin of the gr a ph: time 0.94 ms/read and en-
rgy 1.05 mJ/read) than the optimized version running on ARM
90.2 ms/read, 217.9 mJ/read), Intel Core-i9 (5.9 ms/read, 740.9

J/read), and Intel Xeon Gold processor (1.8 ms/read, 358.3
J/r ead). The ener gy-delay pr oduct is 644.94 for the server but

.987 for HAR U. T hus , HAR U is 650 × better in terms of energy-
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Figure 8: Energy and performance. 

Table 1: sDTW accelerator resource utilization. 

Resource Available Used (utilization) 

CLB LUT 117,120 21,121 (18.03%) 
CLB Registers 234,240 16,798 (7.17%) 
CARRY8 14,640 1,787 (12.21%) 
F7 Muxes 58,560 9 (0.02%) 
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dela y product. T he energy consumed for HAR U and the ARM pro- 
cessor was estimated using the po w er estimates reported by Vi- 
vado in the synthesis report. In contrast, the thermal design po w er 
(TDP) v alue r eported in the pr ocessor specification was used for 
Intel processors. For additional po w er analysis information for the 
HARU system on the Kria de vice, please r efer to Supplementary 
Note 8. 

Resource utilization 

The resource utilization for our sDTW acceler ator, whic h loads the 
r efer ence signal to the on-chip block RAM memory before run- 
ning, with a single query processor on the Kria board, as reported 

by the Vivado synthesis report, is shown in Table 1 . 
Note that we used a single query processor for all the above 

experiments to show the bare minimum performance on a low- 
end FPGA platform. As shown in Table 1 , the maximum utilization 

(CLB LUT) is < 20%; thus, in theory, the Kria board can fit up to at 
least 4 parallel query processors with some engineering effort. In 

fact, we have an experimental br anc h that does not use on-chip 

bloc k RAM to stor e r efer ences befor ehand and dir ectl y str eams 
r efer ence signals together with queries . T his means multiple ac- 
celerators on the same FPGA will not have critical paths in be- 
tween accelerators. For the postimplementation resource utiliza- 
tion of 4 acceler ators tar geting the Xilinx Kria AI Starter Kit, see 
Supplementary Note 2. 

Comparison with alternate methods 

The analysis in the preceding subsections r epr esents the most 
equitable comparisons possible. In this subsection, we attempt 
to compare HARU with other existing alternate methods. We 
m ust ac knowledge that making a direct comparison is challeng- 
ing as different methods are tailored to w ar d different goals and 

intended for specific systems. Also, it is important to note that 
each method possesses its own distinct advantage and could be 
used complementarily. 
omparisons with DeepSelectNet and Guppy + Minimap2 

o compare HARU with DeepSelectNet [ 19 ] (an enhanced neu-
al network–based method based on SquiggleNet [ 20 ] to classify
 eads fr om 2 classes of species) and the a ppr oac h used in Read-
sh [ 13 ] (Guppy fast basecalling follo w ed b y Minimap2 for map-
ing), we used a dataset containing reads from 2 species, SARS-
oV-2 and yeast (see Methods, Supplementary Notes 3 and 4).
eepSelectNet was executed on a server with a Tesla V100 GPU

as the proof-of-concept implementation is not supported on an 

dge GPU). Without a GPU, neural network–based methods will 
e impr acticall y slow. HARU executing on the Xilinx Kria embed-
ed platform (1,066.3 reads/s) w as y et 2.103 × faster (Fig. 9 ) than
eepSelectNet running on the server (507.1 reads/s). As Guppy 
inaries for ARM processors are available and Minimap2 can be
asily compiled for ARM [ 40 ], we executed Guppy_fast + Minimap2
n an NVIDIA Jetson Xavier edge GPU device as Guppy is im-
r acticall y slow without a GPU (see Methods). HARU was still
.354 × faster than Guppy_fast + Minimap2 (317.94 reads/s). In the
uppy_fast + Minima p2 a ppr oac h, Guppy took 96.4% of the time,
emonstrating that in base alignment–based selective sequenc- 

ng methods, basecalling is the bottleneck. The accuracy of HARU
97.41%, Methods, Supplementary Note 4) was better than DeepS- 
lectNet (91.78%) and Guppy_fast + Minimap2 (91.46%). 

Note that Python-based DeepSelectNet is a proof-of-concept 
esign to run on servers and is not optimized for perfor-
ance . T her efor e, the afor ementioned numerical v alues should

ot be inter pr eted as definitiv e, as the method could poten-
ially be optimized for embedded systems. When comparing with 

upp y + Minimap2, note that Gupp y w as executed on a GPU, while
ARU is designed for an FPGA arc hitectur e. It is possible that im-
lementing Guppy on an FPGA could impr ov e its performance.
he accuracy of Guppy + Minimap2 was e v aluated using default
arameters in Minimap2, and parameter tuning may result in bet-
er accurac y. Ho w ever, such w ork is bey ond the scope of this cur-
ent study. 

omparison with UNCALLED 

o compare HARU with UNCALLED, we mapped SARS-CoV-2 reads 
o the SARS-CoV-2 r efer ence and compar ed the ma pping location
f reads reported by UNCALLED and HARU to Minimap2’s map-
ing (see Methods and Supplementary Note 4). UNCALLED was 
xecuted on a Rock64 edge-computing board, which has a quad-
ore ARM Cortex A53 processor with 4 GB of RAM, similar to the
ria device used for HAR U. UNC ALLED has many software depen-
encies and r equir es a pac ka ge mana ger, whic h is not av ailable on
he Kria device running PetaLinux (see Methods). HARU’s through- 
ut (1,066.33 reads/s) is 36.85 × higher than UNCALLED on Rock64

28.94 r eads/s). The accur ac y of UNCALLED (91.2%) is still lo w er
han HARU’s (97.41%). 

Note that when comparing UNC ALLED with HAR U, UNC ALLED
s executed on the CPU while HARU runs on the CPU and FPGA
eter ogeneousl y. The r esults abov e m ust not be wr ongl y inter-
reted that UNCALLED is not lightweight, in fact, UNCALLED is
 uc h less CPU demanding than sDTW and scales well for larger

 efer ences. While it is not in the scope of this work, optimizing UN-
ALLED and implementing it on FPGA could yield better results. 

omparison with SquiggleFilter 
quiggleFilter [ 18 ] is a conceptual ASIC design for selective se-
uencing. As it is a conceptual ASIC design work yet to be fab-
icated and integrated with the envisioned system on chip (SoC)
 18 ], we are unable to compare the performance throughput and
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Figure 9: Comparison between HARU and state-of-the-art methods. 
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ccurac y. Ho w ever, with the provided HDL source code, the re-
ource utilization of HARU and SquiggleFilter can be compared.
e set the SquiggleFilter design to use 2,000 PEs as claimed in

 18 ], set the target device to the Kria AI starter kit, and manu-
lly synthesized the individual modules (as the design does not
nclude a synthesizable top-le v el module orc hestr ating all sub-

odules). Postsynthesis results show that the PE used in Squig-
leFilter r equir es 2.15 × mor e CLB LUTs (88), 5.81 × mor e CLB Reg-
sters (93), and 2.75 × more CARRY8 resources than HARU’s PE in
he sDTW accelerator (41, 16, and 4, r espectiv el y). As Squiggle-
ilter r equir es 2,000 PEs for a single tile of acceler ator (while HARU
 equir es onl y 250 as it uses e v ents), the war per in SquiggleFilter
 equir es 8.44 × mor e CLB LUTs (178,553), 11.54 × mor e CLB Reg-
sters (191,991), and 12.5 × more CARRY8s (22,002) than the total
esource utilization of HARU’s sDTW accelerator (21,158, 16,634,
nd 7,160, r espectiv el y). Note that this comparison for Squiggle-
ilter is excluding the normalizer, mean finder, and mean absolute
eviation finder, and its top-level entity. See Supplementary Note
 for a more detailed resource comparison. 

We also note that although claimed to be verified on FPGA,
quiggleFilter is primarily an ASIC design work. The results above
arget the Kria AI Starter Kit device that HAR U uses , and synthe-
is results may differ based on target devices . Nevertheless , HAR U
hows to have an advantage over SquiggleFilter when targeting
PGAs for deployment with its m uc h mor e efficient r esource uti-
ization. In addition, HARU is a complete system integrated with
ff-the-shelf har dw ar e de vices with softwar e support. 

ethods 

esign of hardware acceler a ted Read Until 
ARU targets low-cost MPSoCs with on-chip FPGA to perform

elective sequencing processing. Fig. 10 shows the arc hitectur e
f HARU in an ONT nanopore sequencing w orkflo w. HARU con-
ists of 3 main components: the software processing layer, device
rivers for the accelerator and associated har dw are, and the har d-
ar e sDTW acceler ator. The softwar e pr ocessing layer, discussed

n the “Software processing layer” section, uses a multithreaded
atc h pr ocessing arc hitectur e to perform r aw r ead signal pr epr o-
essing and is customizable based on the selection criteria. The
e vice driv ers , discussed in the “HAR U de vice driv ers” section, ar e
esigned to provide high-throughput data transferring of query
nd r efer ence signals. Lastl y, the r esource-efficient sDTW acceler-
tor, discussed in the “Resource-efficient sDTW accelerator” sec-
ion, performs high-throughput sDTW for the selective sequenc-
ng use case. 

oftwar e pr ocessing la yer 
he software processing layer of HARU is the front end of the
ARU design running on the processing system on the MPSoC.

ts main tasks include pr epr ocessing the r efer ence sequence and
aw signal reads and the final selection decision. Since references
re obtained in base r epr esentation as discussed in the “Nanopore
elective sequencing” section, the initialization step of the soft-
ar e pr ocessing layer forms the synthetic r efer ence signal for the

orw ar d and r e v erse r epr esentation of the base r efer ence (this is
eeded since DNA molecules ar e double-str anded) using the k -
er model for the flowcell type . T hen, in pr epar ation for the sDTW

omputation in har dw ar e, the r efer ence signal is normalized us-
ng z -score normalization. Since the data types used for the sig-
al and cost matrix in the sDTW accelerator are 16-bit fixed-point
ypes (discussed in the “Resource-efficient sDTW accelerator” sec-
ion), the normalized values are scaled with a scaling factor to
r eserv e signal resolution. 

During the genome sequencing step, the software layer collects
equenced data from the nanopore sequencer in batches, which
re then dispatched into multiple threads for efficient comput-
ng of pr epr ocessing (see Fig. 10 ). Eac h thr ead performs e v ent de-
ection on the raw signal samples to reduce sample data size for
he sDTW accelerator. This is done until enough e v ents ar e col-
ected. For the R9.4 flowcell, 250 e v ents ar e typicall y adequate for

apping and would require roughly 0.4 to 0.8 seconds of data
ollection, which includes the time to obtain around 50 to 300
 v ents that belong to the read adapter and then follo w ed b y the
ctual 250 e v ents of the query (see Supplementary Note 5 for
ore information). After the collection, the events are normal-

zed and scaled with the same scaling factor used in the refer-
nce signal pr epar ation. When thr eads finish the pr epr ocessing,
he processed data are gathered and sent to the sDTW acceler-
tor for processing using the drivers. After which, the mapping
osition and the similarity score are used to decide whether the
ead should be rejected. 

ARU device drivers 
o control and use the har dw ar e acceler ator in the softwar e pr o-
essing lay er, w e designed the softw ar e de vice driv ers to hav e 2
ain data paths (see Fig. 10 ). The first data path is the control

ath of the acceler ator, whic h uses the AMBA AXI4-Lite protocol
o configure the control registers and read status registers in the
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Figur e 10: HAR U arc hitectur e. 
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software . T he accelerator’s physical address is memory-mapped 

to the virtual address space for user space applications to use. 
The second data path is for the query and r efer ence sequences.

To pr e v ent data tr ansfer fr om becoming a bottlenec k, we use the 
AMBA AXI4-Str eam pr otocol to str eam query and r efer ence data 
into the accelerator at a high-throughput rate . T his is done by 
using the AXI direct memory access (DMA) module to point to a 
physical har dw ar e addr ess to stream data to and from. By calling 
the driver function for processing the query, the sDTW accelerator 
driver initiates the transfer from the query and reference buffers 
to the transfer buffer on double data rate (DDR) memory dedi- 
cated to AXI-stream communication and the FPGA. Our bench- 
marks show that data can be sent to and from the accelerator at 
a throughput of 330 MB/s. 

Resource-efficient sDTW accelerator 

Algorithm 2: Memory-efficient subsequence DTW 

Input : X[1 : M ] , Y[1 : N] , M , N 

Output: po sitio n , sco re 
1 C: array of size M + 1 initialised to ∞ ; 
2 score ← ∞ ; 
3 po sitio n ← −1 ; 
4 for j in range 1 to N do 
5 n ← 0 ; 
6 nw ← C[1] ; 
7 w ← C[2] ; 
8 for i in range 1 to M do 
9 C[ i ] := abs (x [ i ] − y [ j]) + min (n, nw, w ) ; 

10 n := C[ i ] ; 
11 nw := w ; 
12 w := C[ i + 2] ; 
13 end 
14 if C[ M ] < score then 
15 po sitio n ← j; 
16 score ← C[ M ] ; 
17 end 
18 end 
As discussed in the “Subsequence dynamic time warping” sec- 
ion, the standard sDTW algorithm has O ( MN ) time and space
omplexity due to the computation of the cost matrix. The com-
utation of a cell value in the cost matrix requires comparing 3
eighbor cell values, making the exploitation of available hard- 
ar e par allelism harder. Also, the pr eserv ation of the full cost
atrix does not scale well if dir ectl y implemented on resource-

onstr ained FPGA de vices. We identified that the bac ktr ac king of
he cost matrix to obtain the warp path is unnecessary for Read
ntil as the ending position is adequate to make the rejection de-
ision. We provide the following optimizations over sDTW to ob-
ain a resource-efficient high-throughput sDTW accelerator. 

ost matrix memory optimization 

he need to pr eserv e the M × N sized matrix for bac ktr ac king was
iscussed in the “Subsequence dynamic time warping” section.
o w e v er, for selectiv e sequencing, the obtained end position of

he alignment is adequate to determine the location of the current
uery; thus, the bac ktr ac king step for obtaining the starting posi-
ion is unnecessary . Consequently , preserving the whole cost ma-
rix values is unnecessary, and a cost array of M + 1 is sufficient.
lgorithm 2 shows the sDTW algorithm after the cost matrix size

s reduced. The outer loop (line 4 of Algorithm 2) iterates through
he whole r efer ence sequence, while the nested inner loop (line
 of Algorithm 2) iterates through the column at each reference
ample. During eac h iter ation of the inner loop, the computation
f the r ecurr ence equation is performed, and the computed value
s stored in the cost array that is the same size as the query. Once
he inner loop completes, the curr ent minim um scor e and posi-
ion values are updated if the last cell of the cost matrix is smaller
han the current minimum score. As the computation is done in
he same way as the original sDTW with the whole cost matrix,
here is no impact on accuracy from this optimization. 
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peration pipelining 

he sDTW cost matrix size reduction explained above optimizes
he space complexity of the computation for selective sequenc-
ng. Ho w e v er, the algorithm’s execution is still sequential and has
 ( MN ) time complexity. Computing the whole column in paral-

el by unrolling the inner loop is not feasible due to the data
ependency in the r ecurr ence equation that needs waiting until
he n value is ready (see Algorithm 2). We observe that once the
rst iteration of the inner loop for the column is completed, all
ata dependencies for the first inner loop iteration for the next
olumn are ready. By pipelining the outer loop computation, an
blique column is formed that is computed in parallel, as shown
n Fig. 11 . This oblique column tr av erses thr ough the r efer ence se-
uences, reducing the time complexity from O ( MN ) to O ( N ) since
he N query size is now computed in parallel. Since all cell com-
utations are computed only after the dependencies are satisfied,
ipelining does not affect the accuracy of sDTW. 

ixed-point data r e pr esentation 

fter the optimization abo ve , the har dw are’s computational com-
lexity is O ( M ). Ho w e v er, the actual time needed is ( M + N − 1)

II , where II is the initiation interval (i.e., the number of cy-
les between loop iterations). In pipelined Algorithm 2, II is how
ast the r efer ence equation C [ i ] := abs ( x [ i ] − y [ j ]) + min ( n , nw , w )
an be computed. Normally, 32-bit floating-point data types are
sed for the sDTW computation to pr eserv e the pr ecision after
he sequences are normalized. This is expensive to implement
n har dw ar e r egarding r esources and execution time. By using a
xed-point r epr esentation with fe wer data bits and scaling the se-
uence values using a scaling factor, the r ecurr ence equation can
e computed in har dw ar e r a pidl y and efficientl y while k ee ping
ufficient precision. We chose 16-bit fixed points with a scaling
actor of 2 5 as it gives sufficient precision and k ee ps II at 1 clock
ycle (see section Results on accuracy). Using fixed point with a
tatic scaling factor will decrease the accuracy slightly as we are
sing fewer bits to represent the decimal points compared to float-

ng points. Ne v ertheless, this data r epr esentation will still pr o-
ide close to zero difference in mapping accuracy compared to
sing floating points (see Supplementary Notes 1 and 6 for more
etail). 

ARU’s sDTW Accelerator 

he oblique parallel-computed column mentioned above uses
 PE-chain structure where data-dependent neighbor cells are
hared among the PEs (Fig. 11 ). As shown in Fig. 12 , the shared
 alues ar e stor ed in 2 r egister arr ays of size M (L1 being the pr e-
ious cost array and L2 being the second pr e vious cost array). At
ac h iter ation, the costs in the L1 arr ay ar e shifted into the L2 ar-
 ay, while the curr ent costs ar e passed onto the L1 arr ay. Eac h PE
omputes the r ecurr ence equation, whic h takes the Manhattan
istance ( δ = | x [ i ] − y [ j ] | ) and adds the minimum of the 3 neighbor
ells (see Equation 1 ). Samples of the r efer ence sequence ar e first
treamed into the first PE of the chain and are then passed along to
uccessive PEs in each iteration. In the “Software processing layer”
ection, we discussed that the software processing layer uses mul-
ithr eaded batc h pr ocessing to perform e v ent detection and nor-

alization. The e v ent detection decr eases the query size to make
he M term smaller in the algorithm complexity. We choose to use
 size of 250 e v ents (see Supplementary Note 5), giving the accel-
rator a PE chain of 250 PEs. In total, it takes N + 250 − 1 clock
ycles to complete the full search. 
xperimental setup 

 he HAR U system, proposed in the “Design of har dw are accel-
rated Read Until” section, was implemented on Xilinx’s Kria AI
tarter Kit with a Zynq Ultrascale + XCK26-SFVC784-2L V -C MP-
oC. This board contains a processing system with a quad-core
RM Cortex A53 CPU and 4 GB of DDR4 memory (specifications
n column “MPSoC” in Table 2 ). Implementation details of HARU
re discussed in the “HAR U implementation” section. T his HAR U
mplementation is compared to 2 pure software implementations,
iscussed in the “Pure software implementations” section. These
 software versions are executed on a desktop computer compris-
ng a 10-core Intel Core-i9 processor and a high-performance com-
uter (server) with a 36-core Intel Xeon processor (specifications
re in Table 2 ). We performed the experiments on 2 r epr esentativ e
atasets, detailed in the “Datasets” section. 

ARU implementation 

he operating system running on the processing system of the
oard is a customized embedded Linux ima ge gener ated using Xil-

nx’s Petalinux 2021.1 tool. To show the bare minimum through-
ut of the accelerator, our sDTW accelerator is synthesized with a
ingle-query processor in the accelerator clocked at 100 MHz. The
umber of query processors that can fit in the FPGA depends on
he av ailable r esource on the de vice; see the “Resource utilization”
ection for resource utilization of the accelerator with a single-
uery processor. 

DTW hardw ar e accelerator 

he sDTW accelerator was implemented using Verilog Hardware
escriptiv e Langua ge (HDL). Synthesis was performed using Xil-

nx’s Vivado 2021.1. The control bus interface for the accelerator
ses the AMBA AXI-Lite protocol. We use the AMBA AXI-Stream
r otocol thr ough the AXI DMA har dw are in the FPGA for high-
hroughput data transfer for the query and reference data. 

AR U dri v er 

e vice driv ers wer e implemented for the har dw ar e acceler ator
nd AXI DMA in the C pr ogr amming langua ge . T he accelera-
or and AXI DMA driv ers memory-ma p the physical addr ess of
orr esponding de vices into the virtual addr ess space for utiliza-
ion by the user space applications . T he shar ed comm unication

emory buffers between software and FPGA are preserved on
he DDR memory, which is allocated during the initialization
tage. 

oftw ar e pr ocessing layer 

he software processing layer that prepares the raw signals and
erforms the selecting decision was implemented in the C pro-
r amming langua ge. For benc hmarking experiments, the soft-
ar e loads r aw signal data in the BLOW5 format [ 41 ] from a
SB 3 external hard drive connected to the Kria board. Raw sig-
als for a batch of reads are first loaded to the Random Ac-
ess Memory (RAM) and are preprocessed using multiple threads
mplemented using POSIX thr eads. Pr epr ocessing steps include
 v ent detection, pr efix trimming, and normalization (explained in
he “Softwar e pr ocessing la yer” section). T hen, sDTW is performed
n eac h r ead in har dw are b y iter ativ el y calling the HARU driver.
nce the mapped positions and the DTW scores are available

or the whole batc h, the softwar e computes the mapping qual-
ty (MAPQ) [ 42 ] and executes the selection criteria based on this
core [ 11 ]. 
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Figure 11: Pipelined execution of Algorithm 2. 

Figure 12: sDTW hardware accelerator design for HARU. 

Table 2: Computational platforms. 

System HPC Desktop MPSoC 

CPU Intel Xeon Gold 6154 Intel Core i9-10850K Arm Cortex-A53 
CPU cores 36 10 4 
Cloc k r ate 3.00 GHz 3.60 GHz 1.5 GHz 
RAM 377 GB 32 GB 4 GB 
FPGA No No Yes 
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Pur e softwar e implementations 
RUscripts 

Original R Uscripts , written by Loose et al. [ 11 ] using Python 2.7,
has r eac hed end-of-life support and tar gets ONT’s R7 Nanopor e 
c hemistry, whic h is no longer in use. We modified RUscripts to 
work on Python 3.6 + and extended it to support BLOW5 format 
and ONT’s current Nanopore chemistry R9.4. This support for R9.4 
chemistry is implemented by integrating the R9.4 pore model and 

R9.4 e v ent detection par ameters [ 43 , 44 ]. 
ptimized RUscripts in C 

s the Python RUscripts is not efficient enough for a fair compari-
on, we implemented a m ultithr eaded C implementation that fol-
ows similar algorithmic steps . T his implementation in C is very
imilar to the software explained above (see the “Software pro-
essing layer” section), except that sDTW on the CPU is called with
 ultiple thr eads instead of using the FPGA acceler ator. The sDTW

omputation on the CPU is performed using the optimized sDTW
mplementation in the mlpy library [ 35 ]. 

atasets 
ARU was tested against combinations of software running on the

ystems mentioned in Table 2 on 2 datasets . T he first dataset is the
ARS-CoV-2 genomic reads sequenced on a MinION R9.4 flowcell 
nd has a total of 1.382 million reads (Table 3 ), publicly available at
 45 ]. The SARS-CoV-2 genome (MN908947.3), which is 29,903 bases
ong, is used as the r efer ence for this experiment. The second
ataset is a subset of a NA12878 human genome r efer ence sample
ontaining 500,000 reads sequenced on a PromethION R9.4 flow- 
ell (Table 3 ), publicly available at [ 41 ]. This dataset is mapped to
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Table 3: Datasets. 

Target SARS-CoV-2 RFC1 

Type Viral genome Partial human genome 
No. of bases 29,903 128,915 
Search space size 59,806 257,830 
No. of reads 1,382k 500k 
SLOW5 file size 5.5 GB 39 GB 
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 r efer ence constructed by extr acting the r egion c hr4:39262456-
9391375 (128 Kb long) of the human genome (hg38). This re-
ion includes the RFC1 gene, which contains an important
athogenic v ariant indicativ e of her editary cer ebellar ataxia dis-
ase, and selective sequencing has been applied [ 1 ] for accurate
iagnosis. 

 erf ormance evaluation 

e measure the overall execution time of mapping all reads of the
rovided datasets by using the gettimeofday function in C. This exe-
ution time is divided by the number of reads in the dataset to cal-
ulate the signal ma pping thr oughput. Note that all our time mea-
urements used in throughput calculation include all the over-
eads, including reading signal data from the disk, raw signal pre-
r ocessing on softwar e, and data tr ansfer time to/fr om FPGA for
ARU. 

omparison with alternate methods 
o compare HARU with DeepSelectNet and the approach in Read-
sh (Gupp y2 follo w ed b y Minimap2), w e used the curated test
ata for SARS-CoV-2 and yeast from [ 19 ] that contained 20,000
 eads fr om eac h species. DeepSelectNet was installed and exe-
uted on a workstation with a Tesla V100-16GB GPU, 20 CPU cores,
nd 384 GB RAM (Supplementary Notes 3 and 4). Guppy 6.1.3
nd Minimap2 2.20 were set up and run on an NVIDIA Jetson
avier AGX board. Note that we activated the 15-W nvpmodel on

his device to make the specification closer to what is available
n the Kria board used for HAR U. T he dna_r9.4.1_450bps_fast.cfg
odel was used for Guppy, and a combined r efer ence genome of

ARS-CoV-2 and yeast was used for Minimap2 (Supplementary
ote 7). For DeepSelectNet, the first 4,500 signal samples were
sed (default options), with the same number of signal samples
sed for Guppy + Minimap2. For HARU, we used the default pre-
x and query size in HARU (50 + 250) that a ppr oximatel y r e-

ates to around 1,500 to 3,000 signal samples . T he accuracy of
ach method was calculated as the sum of true positives and true
egati ves di vided by the total reads (Supplementary Note 4). For
ARU, wher e the r eads fr om eac h species wer e ma pped a gainst

he SARS-CoV-2 r efer ence, the cutoff v alue for sDTW scor es to de-
ermine if a read mapped to SARS-CoV-2 or not was determined,
s explained in Supplementary Note 3. 

To compare against UNCALLED, we used 40,000 reads from the
ARS-CoV-2 dataset (in subsection Datasets). UNCALLED was in-
talled on a Rock64 embedded device that has a similar comput-
ng po w er (quad-core ARM Cortex A53 with 4 GB RAM) to the Kria
oard used for HAR U. T his is because UNCALLED has many de-
endencies, and enabling support for the Kria platform, which
uns a custom PetaLinux distribution, is laborious. Despite the
ock64 board supporting Ubuntu and the a pt pac ka ge mana ger
long with Python/PIP and C/C ++ build tools, we still had to man-
all y interv ene in the UNCALLED installation scripts to enable
upport for HDF5 and BWA dependencies to build on ARM. Both
AR U and UNC ALLED wer e executed using the SARS-CoV-2 r efer-
nce, and the accuracy was calculated by using UNCALLED paf-
tats by comparing mapping locations to Minimap2 mappings as
he truth set (Supplementary Note 7). The –chunk-time and –max-
hunks 1 parameters in UNCALLED were used to limit the number
f signal samples to 3,200 (Supplementary Note 7). For generating
he truth set using Minimap2, the complete reads were basecalled
nd mapped. 

iscussion 

ignal-lev el v ersus base-lev el selecti v e 

equencing 

he field of selective sequencing is a nascent area, and to
ate, no definitive solution has emerged as the panacea. Both
ignal-le v el and base-le v el a ppr oac hes to selectiv e sequencing
av e adv anta ges and disadv anta ges, and determining whic h is
he optimal a ppr oac h at this sta ge is mor e of a philosophical
ebate. 

With the methods available to date, basecalling raw signals ob-
ained from the sequencers to convert signals to the base domain,
ollo w ed b y using optimized alignment tools suc h as Minima p2
the a ppr oac h described in Readfish), is the most pr actical a p-
r oac h if large genomes are involved because base-level aligners
av e matur ed ov er the past decade of r esearc h and de v elopment
nd are highly optimized to make base-level selective sequencing
ractical. Ho w ever, for basecalling, regardless of the GPU acceler-
tion effort performed by ONT over the years, basecalling is still
he major bottleneck for base-domain selective sequencing, tak-
ng 96% of the execution time for Guppy fast basecalling + Min-
ma p2. Furthermor e, basecalling is not portable or scalable due to
he compute po w er constr aints, and if selectiv e sequencing is e v er
o be done on an integrated chip within the sequencer, basecall-
ng a ppr oac hes would r equir e a mor e costl y system and possibl y
ome at a m uc h lar ger form factor. 

The goal of signal-le v el selectiv e sequencing is to completely
ypass the basecalling step and, instead, dir ectl y ma p the r aw sig-
al to the r efer ence . T his is an emerging and immature field and
ill ine vitabl y r equir e a substantial period of time to ac hie v e the

ame le v el of maturity as base-le v el selectiv e sequencing. Since
he concept of nanopore selective sequencing was introduced, a
 ange of differ ent signal-le v el selectiv e sequencing methods has
een explored, including RUscripts [ 11 ], cwDTW [ 17 ], UNCALLED
 15 ], sigmap [ 16 ], and, more recently, RawHash [ 21 ], DTWax [ 46 ],
nd RawMap [ 47 ]. 

In addition, dir ectl y passing r aw signals into neur al networks
s also being explored as opposed to using classical algorithms
or mapping, including works such as SquiggleNet [ 20 ], DeepSe-
ectNet [ 19 ], and RISER [ 48 ]. Ho w e v er, neur al network–based ap-
r oac hes ar e curr entl y limited to classifying r eads between 2 tar-
et species, and getting mapping coordinates is not yet possi-
le . Moreo ver, neural network–based methods require training the
odel for each dataset, which makes it less flexible and r equir es
or e pr epar ation than the classical a ppr oac hes. 
The data rate of nanopore sequencers is comparable to modern

amera sensors on mobile devices today. Considering the amount
f raw signal processing being performed for sensors on mobile
e vices, it is pr omising to envision signal-le v el nanopor e selec-
ive sequencing done efficiently within nanopore sequencers, if
his le v el of miniaturization is e v er r eac hed for selectiv e sequenc-
ng compute r equir ements. In summary, signal-le v el selectiv e se-
uencing is an exciting area worth investigating together with
ase-le v el selectiv e sequencing. 
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Limitations and future work 

In our proof-of-concept implementation of HARU, the r efer ence 
sequence is first loaded onto the FPGA’s on-chip memory (block 
RAM) at the beginning of the execution. During alignment, the 
PE c hain str eams the r efer ence samples fr om the bloc k RAM to 
the first PE (Fig. 12 ). On-chip memory (block RAM) on the Xilinx 
Kria board used for e v aluation is limited to 5.1 MB, thus limit- 
ing the maximum reference sequence size to 295 kilo-bases. To 
eliminate this limitation, future work could directly stream the 
r efer ence together with the query sequence befor e eac h sDTW 

call (there is currently an experimental branch for this; see Sup- 
plementary Note 2). Ho w e v er, e v en with HARU (linear time com- 
plexity for sDTW), performing sDTW of a query on a gigabase- 
sized genome like the human genome is impractical (estimated 

to take 3 seconds for a query). Ne v ertheless, when pr ocessing 
gigabased-sized genomes , HAR U is intended to be used in the fi- 
nal refinement step when potential mapping locations (a few ref- 
erence sequence segments that are small in size) are first found 

using a heuristic method. Such a heuristic method that can cur- 
r entl y ma p nanopor e signals dir ectl y to gigabased-sized genomes 
does not exist. Ho w e v er, methods suc h as Sigma p [ 16 ], UNCALLED 

[ 15 ], and RawHash [ 21 ] ar e alr eady setting the foundation for scal- 
able direct signal mapping. 

Future work can also improve the throughput by implement- 
ing multiple parallel sDTW cores for coarse-grain parallelism. Our 
sDTW processor uses less than 20% of the LUT resources of the 
FPGA, as mentioned in the “Resource utilization” section. T hus , re- 
sources are sufficient to fit multiple parallel processors, increasing 
the theor etical thr oughput. A high-end FPGA board with a larger 
area could support even more processors; for instance, Xilinx’s 
Versal VP2802 FPGA has sufficient r esources to theor eticall y fit 140 
par allel pr ocessors (see Supplementary Note 2 for experimental 
explorations of deploying 4 accelerators in HARU). Ho w ever, such 

work also would r equir e eliminating other bottlenecks that would 

arise . For instance , the 30% of execution time curr entl y spent on 

the signal pr epr ocessing (Fig. 6 ) would then become a bottleneck 
and r equir e acceler ation. 

Our implementation of HAR U loads ra w signal from the BLOW5 
file format because the slow5lib library is lightweight (with min- 
imal dependencies), thus easily allowing the cross-compilation 

to target the Kria platform. Running MinKNOW on the Kria plat- 
form is theor eticall y possible but is far from practical due to be- 
ing closed source. Even if MinKNOW were open source, potential 
issues with hundreds of bulky dependencies would make cross- 
compilation impractical. Potential workarounds could include a 
serv er–client a ppr oac h wher e MinKNOW runs on a la ptop and 

communicates with the Kria board using ethernet. Howe v er, suc h 

workar ounds ar e not ideal due to network comm unication ov er- 
heads. Also, latency in the public-facing ReadUntil API provided 

by ONT (in Python pr ogr amming langua ge) would negate the mas- 
sive benefit of har dw ar e acceler ation. 

Our proof-of-concept HARU implementation is currently lim- 
ited to DNA on R9.4 c hemistry. Futur e work could focus on extend- 
ing selective RNA sequencing, the most recent R10.4 chemistry, or 
upcoming protein sequencing from ONT. 

The primary sequencer de vice tar geted for HARU running on 

r esource-constr ained de vices is the palm-sized MinION nanopore 
sequencer. Sequencers such as ONT’s Pr omethION pr ovide a 
m uc h lar ger thr oughput than MinION and will v astl y incr ease 
the selective sequencing processing requirements. Future work 
could explore the scalability of HARU on higher-end FPGAs with 

high bandwidth memory and more resources for fast selective 

i

equencing on high-throughput sequencers such as the Prome- 
hION. 

elated hardware acceleration work 

xisting har dw ar e acceler ation work tar geting the subsequence
earc h pr oblem using the DTW algorithm famil y is r ar e. Pr e vious
PGA acceler ators suc h as [ 49 , 50 ] implement a cDTW accelera-
or to compute the distance score between a query and a win-
ow buffer that stores a subset of the r efer ence sequence . T he
 efer ence sequence is continuously streamed into the window af-
er each cDTW compute iteration completes, shifting older sam- 
les out. A distance score that is below a preset threshold indi-
ates a match between the query and the current reference sub-
equence in the window buffer. Other work [ 49 ] focused on ex-
loiting coarse-grain parallelism by computing multiple cDTW in 

arallel, and [ 50 ] introduced a PE-ring structure that computes
 ultiple r ecurr ence equations in par allel wher e the PEs compute

ells that do not share data dependencies . T his windo w ed cDTW
 ppr oac h is suitable for r efer ence sequences of undetermined ar-
itrary length. Still, it is inefficient (requires N × O ( M 

2 ) for soft-
ar e a ppr oac hes) for selectiv e sequencing usa ge wher e the r ef-
rence sequence is static with a known length. sDTW, on the
ther hand, is a data-r eusing v ersion of the a ppr oac h, and our
ork exploits the fine-grain parallelism that computes the whole 
 ( M ) dimension in parallel, leaving O ( M + N ) computational time
nd O ( M ) space . Furthermore , there is prior work that accelerates
TW using nonvolatile memories [ 51 ] and using GPU acceleration

 52 , 53 ]. 
For the har dw ar e acceler ation on signal-alignment Read Until,

he only previous attempt was a simulated Application Specific 
ntegrated Circuit (ASIC) design that accelerates the sDTW algo- 
ithm [ 18 ]. The proposed accelerator uses the unprocessed raw
ignal reads to map directly with the reference, which requires
,000 PEs to perform the matching and has a r efer ence limit of
00 KB. The design has extensive resource requirements, mak- 
ng it difficult to fit on lo w er-cost r econfigur able har dw are, thus
ar geting ASIC. Furthermor e, as seen in the history of Read Until
 11 , 13 , 27 ], Read Until r equir es implementations to adapt quickly
s nanopore sequencing technology impro ves , and the cost of re-
anufacturing ASICs would be unsustainable. In contrast, HARU 

s a complete design with an efficient software processing layer 
sing the sDTW accelerator. Our presented accelerator requires 
nl y 250 r esource-efficient PEs due to pr epr ocessing, r educing the
uery size needed in the high-throughput computation of sDTW,
nd is capable of executing selective sequencing with low-cost 
mbedded MPSoC platforms with on-c hip r econfigur able hard-
are. 

onclusion 

xisting sDTW-based software methods for nanopore selective se- 
uencing are highly computationally intensive, and a large work- 
tation cannot k ee p up with a portable MinION sequencer. In this
rticle, we present HARU, a resource-efficient design that enables 
DTW-based selective sequencing on a low-cost and portable het- 
rogeneous system comprising an ARM processor and an FPGA,
hich is around 85 × faster than the original sDTW-based soft-
are implementation and around 2.5 × faster than a highly opti-
ized software version running on a server with a 36-core Xeon

rocessor for a complete SARS-CoV-2 dataset. The energy-delay 
roduct for the server is around 650 × higher than HARU execut-

ng on an embedded device. 
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vailability of Source Code and 

equirements 

ARU 

� Project name: HARU 

� Description: Source code for the HARU accelerator, including
the Verilog HDL core accelerator and user-space device driver

� Pr oject homepa ge: https://github.com/beebde v/HARU 

� Operating system(s): Windows 10/11 (building), Custom Em-
bed ded Lin ux image built with PetaLin ux 2021.1 (running) 

� Pr ogr amming langua ge: Verilog, C, Python 

� Other r equir ements: Viv ado 2022.2, Petalinux 2021.1 
� License: MIT 

� biotools:haru 

� RRID: SCR_023563 

igfish-HARU 

� Project name: Sigfish-HARU 

� Description: Source code that demonstrates the proof-of-
concept integration of HARU accelerator for squiggle map-
ping. Also contains the optimized RUscripts implementation
in C. 

� Pr oject homepa ge: https://github.com/beebde v/sigfish-haru 

� Operating system(s): Lin ux (building), embed ded Lin ux built
with PetaLinux 2021.1 (running) 

� Pr ogr amming langua ge: C 

� Other r equir ements: Cr oss-compilation toolc hain for
AARCH64 

� License: MIT 

Uscripts-R9 

� Project name: RUscripts-R9 
� Description: The modified RUscripts to support Python 3.6 + ,

BLOW5 format, and ONT’s current nanopore chemistry R9.4 
� Pr oject homepa ge: https://github.com/beebde v/RUscripts-R9
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: Python 

� Other r equir ements: Python 3.6 
� License: MIT 

a ta av ailability 

atasets used for the benchmarks are available to be directly
ownloaded via the Zenodo repository, Zenedo [ 54 ], which we cu-
 ated fr om publicl y av ailable datasets: [ 55 ] (associated with pub-
ication [ 45 ]) and NCBI accession SRX11368475 (associated with
ublication [ 41 ]). An arc hiv al copy of the code and support-

ng data is also available via the GigaScience repository, GigaDB
 56 ]. 

dditional Files 

upplementary Fig. S1.1. DTW score cutoff threshold versus ac-
uracy. 
upplementary Fig. S1.2. DTW score distribution of positive and
egativ e ma ppings. 
upplementary Fig. S2. Impact of query length and prefix trim

ength on accuracy. 
upplementary Fig. S3. sDTW accelerator modeled using 32-bit
oating point. 
upplementary Fig. S4. sDTW accelerator modeled using 32-bit
xed point. 
upplementary Fig. S5. sDTW accelerator modeled using 16-bit
xed point. 
upplementary Fig. S6. Postimplementation po w er-analysis in-
ormation of Kria with a single accelerator HARU. 
upplementary Table S1. Post-implementation utilisation for
ARU system with single dynamic r efer ence str eaming acceler-
tor. 
upplementary Table S2. Postimplementation utilization
or HARU system with 4 dynamic r efer ence str eaming
ccelerators. 
upplementary Ta ble S3. Comparison betw een HARU and DeepS-
lectNet. 
upplementary Table S4. DeepSelectNet ma pping r esults of
ARS-CoV-2 and yeast. 
upplementary Ta ble S5. Comparison betw een HARU and
uppy_fast + Minimap2. 
upplementary Ta ble S6. Gupp y_fast + Minimap2 mapping re-
ults of SARS-CoV-2 and yeast. 
upplementary Table S7. Comparison between HARU and UN-
ALLED. 
upplementary Table S8. Resource utilization for SquiggleFilter’s
ubmodules. 
upplementary Table S9. Resource utilization for Kria with HARU
eplo y ed in pr ogr ammable logic (PL). 
upplementary Ta ble S10. Resour ce utilization of HARU’s sDTW
ccelerator (experimental reference streaming). 

bbreviations 

PI: Application Pr ogr amming Interface; ASIC: Application-
pecific Integrated Circuit; AXI: Ad vanced eXtensi ve Interface;
DTW: classical dynamic time war ping; CLB: configur able logic
loc k; CPU: centr al pr ocessing unit; DDR: double data r ate; DMA:
irect memory access; DTW: dynamic time warping; FPGA: field-
r ogr ammable gate arr ay; GPU: gr a phics pr ocessing unit; HDL:
ar dw ar e Descriptiv e Langua ge; HPC: high-performance comput-

ng; LUT: lookup table; MAPQ: mapping quality; MPSoC: mul-
ipr ocessor system-on-c hip; ONT: Oxford Nanopor e Tec hnolo-
ies; PE: processing element; RAM: random access memory;
DTW: subsequence dynamic time warping; TDP: thermal design
o w er. 
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