

Hardware Accelerated Real-time Selective **Genome Sequencing**

Po Jui Shih

Supervisor: Sri Parameswaran Co-supervisors: Hasindu Gamaarachchi, Hassaan Saadat

Introduction

Selective sequencing with nanopore technology enables efficient targeted genome analysis

HARU: The proposed Read Until implementation

First FPGA accelerated Read Until implementation

Assessor: Hui Guo

- Software-hardware co-design targeting low-cost MPSoCs
- Extends the MinION sequencer's portable nature
- Low performance requirement for host machine

e.g. [regions of interest / others] \rightarrow [pathogen / host] \rightarrow [cancer / nontumor]

Nanopore Sequencing

- Simple sample preparation (minimal priori knowledge)
- Real-time data output \rightarrow real-time analysis
- Able to reject strands at individual nanopore channels

Portable laptop **MPSoC running HARU MinION** sequencer Selective sequencing with MinION + HARU Contributions Minimal requirements for performing targeted smallgenome analysis Demonstrates the use of High-Level-Synthesis (HLS) for DNA sequencing and analysis acceleration

Provides an extendible framework for Read Until

HARU: Hardware Accelerated Read Until

HARU Overview

Subsequence DTW Accelerator

	Algorithm: SUBSEQUENCE DTW Exercise 7.6 from [Müller, FMP, Springer 2015]					
Original subsequence DTW algorithm ^[3] :	Input:Cost matrix C of size $N \times M$ Output:Accumulated cost matrix DIndices $a^*, b^* \in [1:M]$ of an optimal subsequence of YOptimal warping path P^* between X and $Y(a^*:b^*)$					
Given two sequences X , Y						
 X := (x₁, x₂,, x_M) of length M ∈ N Y := (y₁, y₂,y_N) of length N ∈ N 	Procedure: Initialize $(N \times M)$ matrix D by $\mathbf{D}(n,1) = \sum_{k=1}^{n} \mathbf{C}(k,1)$ for $n \in [1:N]$ and $\mathbf{D}(1,m) = \mathbf{C}(1,m)$ for $m \in [1:M]$. Then compute in a nested loop for $n = 2,,N$ and $m = 2,,M$:					
and cost matrix $\mathbf{C} \in \mathbb{R}^{M \times N}$ • $\mathbf{C}(m, n) := x_m - y_n $	$\mathbf{D}(n,m) = \mathbf{C}(n,m) + \min \{ \mathbf{D}(n-1,m-1), \mathbf{D}(n-1,m), \mathbf{D}(n,m-1) \}.$ Set $b^* = \operatorname{argmin}_{b \in [1:M]} \mathbf{D}(N,b)$. (If 'argmin' is not unique, take smallest index.) Set $\ell = 1$ and $q_{\ell} = (N,b^*)$. Then repeat the following steps until $q_{\ell} = (1,m)$ for some $m \in [1:M]$:					
	Increase ℓ by one and let $(n,m) = q_{\ell-1}$. If $m = 1$, then $q_{\ell} = (n-1,1)$, else $q_{\ell} = \operatorname{argmin} \{ \mathbf{D}(n-1,m-1), \mathbf{D}(n-1,m), \mathbf{D}(n,m-1) \}$. (If 'argmin' is not unique, take lexicographically smallest cell.)					
Sequence v	Set $L = \ell$ and $a^* = m$. Return D , a^* , b^* , and $P^* = (q_L, q_{L-1}, \dots, q_1)$.					

HARU Client

Sequencer \rightarrow HARU

- Collects real-time squiggle data via the Read Until API
- Pre-processes raw data
- Sends data to HARU via Ethernet
- $HARU \rightarrow Sequencer$ Receives sequence mapping results from
- HARU via Ethernet Determines whether the position of strand is within a region of interest
- Sends back rejection to sequencer software if not a necessary strand

HARU Server

- Server application running on a custom PetaLinux generated embedded Linux OS on the processing system of the Zynq MPSoC
- Responsible for query request handling
- Sends query over to accelerator via AXI stream (HP AXI)
- Controls the custom sDTW accelerator through custom drivers
- Sends results back to client via Ethernet using the same socket

Results and Evaluation

Experiment Details and Results

- Accelerator synthesised using Vivado HLS
- Targets the Xilinx Zynq-7020 device (xc7z020clg484-1)
- Tested on the target enrichment application for the bacteriophage lambda DNA
- Single direction has 48,502 bp, giving a full search space of 97,004 bp

Synthesis Results				HLS Latency Estimates				
	Slice LUTs	Slice Register	Slice	BRAM		Cycles	Clock Freq.	Estimate
Available (Zynq-7020)	53,200	106,400	13,300	140	Single directional reference search	48875	90 MHz	0.543
HARU	32,341 (60.79%)	18.899 (17.76%)	9,615 (72.29%)	32.5 (23.21%)	Bi-directional reference search (Zynq-7020)	97755	90 MHz	1.086
					Unpack Streamed Query	250	90 MHz	2.778
					Overall Subseek DTW	98005	90 MHz	1.089

Evaluation

Substantial speedup at a low hardware cost

- Subsequence DTW search now linearly dependent to the length of reference sequence
- Cost matrix only requires three times the size of squiggle sequence (subsequence)
- Optimal for smaller genomes (e.g. bacteria, virus)
 - → fast and direct search, can fully store the reference in on-chip memory (no sw-hw transfer overhead)

Comparison with RUscripts

	RUscript	ts (reference)	HARU (proposed)			
	Laptop Intel i7-8565U	Desktop Intel i9-10850K	HARU system	Network latency	Overall latency	
Avg. sDTW task latency	345.75 ms	136.11 ms	1 ms	3.36 ms	4.36 ms	

Key results:

- Core sDTW: 345.75x faster than Intel i7 Laptop, 136.11x faster than Intel i9 Desktop
- **Overall**: 79.3x faster than RUscripts on Intel i7 Laptop, 31.22x faster than RUscripts on Intel i9 Desktop
- \rightarrow Bottleneck is now the network latency (currently unoptimized)

Preserves portability while enabling scalability

- Accesses HARU's service through Ethernet
- No harsh requirements for host machine running HARU client
- Scalable by deploying a cluster of MPSoCs running HARU \rightarrow In-the-field analysis with low hardware requirements

Provides an extendible low-cost yet high performance-per-watt framework

- HARU demonstrated the use of HLS tools to perform acceleration for DNA sequencing and analysis techniques
- The framework is interchangeable and extendable based on application and algorithmic requirements

References

[1] M. Loose, S. Malla, and M. Stout, "Real time selective sequencing using nanopore technology," BioRxiv, 2016. [2] A. Payne, N. Holmes, T. Clarke, R. Munro, B. Debebe, and M. W. Loose, "Nanopore adaptive sequencing for mixed samples, whole exome capture and targeted panels.," BioRxiv, 2020. [3] M. M'uller, "Dynamic time warping," Information retrieval for music and motion, pp. 69–84, 2007.