
Hardware Accelerated Real-time Selective
Genome Sequencing

Po Jui Shih

Introduction

HARU: Hardware Accelerated Read Until

Results and Evaluation

Selective sequencing with nanopore technology
enables efficient targeted genome analysis

Before preparation After preparation During sequencing

Sequencing @T0 Sequencing @T1

→ Fully sequence strands within regions of interest; reject others

Read Until

A G C T A G C T A G C C A T G T A G C T A G C T A G C TReference

Sample strands

Region of interest

Unnecessary sequencing Unnecessary sequencing

Nanopore Sequencing
▪ Simple sample preparation (minimal priori knowledge)
▪ Real-time data output → real-time analysis
▪ Able to reject strands at individual nanopore channels

Within region → SEQUENCE

Out of bound → REJECT

Mapping

Read Until Implementations
1. Squiggle-domain sequence matching

▪ First Read Until implementation (RUscripts [1])
▪ Uses Dynamic Time Warping (DTW) to map sequences
→ Needed 22-core server to keep up with slower sequencing rate,
deprecated after sequencing rate ↑

2. Base-domain sequence matching
▪ Base-calls the squiggle and uses base-alignment to map [2]

▪ Able to scale to giga-base references
→ Requires high-end GPU to perform real-time base-calling
(excessive), loses portability, and has high performance-watt ratio

Read Until API

A G C T A G C T A G C T A G C T
Reference

Squiggle
Data

Subsequence
DTW Search

Reject?

Read Until API A G C T A G C T A G C T A G C T

Reference (base-domain)
Squiggle
Data

Base-alignmentA G C TBase-calling

Squiggle

Reject?

▪ First FPGA accelerated Read Until implementation
▪ Software-hardware co-design targeting low-cost MPSoCs
▪ Extends the MinION sequencer’s portable nature
▪ Low performance requirement for host machine

HARU: The proposed Read Until implementation

Read Until with HARU (MinION + HARU)

MinION Sequencer

MinKNOW
(Sequencer software)

HARU Client

Read Until API

sDTW
Accelerator

HARU Server

Processing System (PS)

HARUHost Machine

Programmable Logic (PL)

Zy
n

q
 S

o
C

…

HARU Client

HARU → Sequencer
▪ Receives sequence mapping results from

HARU via Ethernet
▪ Determines whether the position of

strand is within a region of interest
▪ Sends back rejection to sequencer

software if not a necessary strand

Sequencer → HARU
▪ Collects real-time squiggle data via the

Read Until API
▪ Pre-processes raw data
▪ Sends data to HARU via Ethernet

HARU Overview

▪ Server application running on a custom PetaLinux generated
embedded Linux OS on the processing system of the Zynq MPSoC

▪ Responsible for query request handling
▪ Sends query over to accelerator via AXI stream (HP AXI)
▪ Controls the custom sDTW accelerator through custom drivers
▪ Sends results back to client via Ethernet using the same socket

DDR Memory

0x0e000000

0x0e001000

0x????????

Ethernet

recv

memcpy
AXI DMA

Driver

HARU Server

sDTW
Accelerator

FPGA (PL)

ARM Cortex A9 (PS)

QueryResults

1.

2.

3.

4.

sDTW Driver

AXI DMA

HARU Server

Subsequence DTW Accelerator

Documented AXIs throughput:
• MM2S = 399.04 MB/s
• S2MM = 298.59 MB/s
Benchmarked AXIs throughput:
• 333.16 MB/s

sDTW accelerator driver
• HLS generated
• Accessed through UIO
/dev/class/uio/uio0

AXI DMA driver
• HARU specific AXI DMA driver
• Accessed through physical

address space
/dev/mem

Sequence y

Se
q

u
en

ce
 x

Best match (min. cost)

Algorithmic optimisations:
a. Padding for cost matrix
b. Reduce cost matrix to single column

abs(x[i] – y[j])
abs(x[i] – y[j]) + top
abs(x[i] – y[j]) + min(top, left, top_left)

Not in memory
In memory

Se
q

u
en

ce
 x

Sequence y

∞
∞
∞
∞
∞
∞

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000

top left top_leftHLS specific optimisations:
a. Pipelining of column computation
b. 16-bit fixed point data type

Se
q

u
en

ce
 x

Sequence y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000

∞

∞

∞

∞

∞

∞

top left top_left

Resulting accelerator:
▪ Oblique PE array with size of M
▪ Cost matrix with size of 3M
▪ Oblique PE array propagates through the

reference sequence
→ Task latency := (M + N −1) × Initiation Interval

Original subsequence DTW algorithm [3]:

Given two sequences X, Y
▪ X := (x1, x2, ..., xM) of length M ∈ N
▪ Y := (y1, y2, ...yN) of length N ∈ N

and cost matrix C ∈ RM×N

▪ C(m, n) := |xm-yn|

Experiment Details and Results

▪ Accelerator synthesised using Vivado HLS
▪ Targets the Xilinx Zynq-7020 device (xc7z020clg484-1)
▪ Tested on the target enrichment application for the bacteriophage lambda DNA
▪ Single direction has 48,502 bp, giving a full search space of 97,004 bp

Synthesis Results

Cycles Clock Freq. Estimated Time

Single directional reference search 48875 90 MHz 0.543 ms

Bi-directional reference search (Zynq-7020) 97755 90 MHz 1.086 ms

Unpack Streamed Query 250 90 MHz 2.778us

Overall Subseek DTW 98005 90 MHz 1.089 ms

Slice LUTs Slice Register Slice BRAM

Available (Zynq-7020) 53,200 106,400 13,300 140

HARU 32,341 (60.79%) 18.899 (17.76%) 9,615 (72.29%) 32.5 (23.21%)

HLS Latency Estimates

RUscripts (reference) HARU (proposed)

Laptop
Intel i7-8565U

Desktop
Intel i9-10850K

HARU
system

Network latency Overall latency

Avg. sDTW task latency 345.75 ms 136.11 ms 1 ms 3.36 ms 4.36 ms

Comparison with RUscripts

Key results:
• Core sDTW: 345.75x faster than Intel i7 Laptop, 136.11x faster than Intel i9 Desktop
• Overall: 79.3x faster than RUscripts on Intel i7 Laptop, 31.22x faster than RUscripts on Intel i9 Desktop
→ Bottleneck is now the network latency (currently unoptimized)

References

Evaluation

Preserves portability while enabling scalability
▪ Accesses HARU’s service through Ethernet
▪ No harsh requirements for host machine running HARU client
▪ Scalable by deploying a cluster of MPSoCs running HARU

→ In-the-field analysis with low hardware requirements

Provides an extendible low-cost yet high performance-per-watt framework
▪ HARU demonstrated the use of HLS tools to perform acceleration for DNA sequencing and analysis techniques
▪ The framework is interchangeable and extendable based on application and algorithmic requirements

HARU HARU HARU

…

Local Area Network

“Needle in a haystack”
e.g. [regions of interest / others]
→ [pathogen / host]
→ [cancer / nontumor]

MinION sequencer Portable laptop MPSoC running HARU

Selective sequencing with MinION + HARU

Contributions
▪ Minimal requirements for performing targeted small-

genome analysis
▪ Demonstrates the use of High-Level-Synthesis (HLS) for

DNA sequencing and analysis acceleration
▪ Provides an extendible framework for Read Until

Substantial speedup at a low hardware cost
▪ Subsequence DTW search now linearly dependant to the length of reference sequence
▪ Cost matrix only requires three times the size of squiggle sequence (subsequence)
▪ Optimal for smaller genomes (e.g. bacteria, virus)

→ fast and direct search, can fully store the reference in on-chip memory (no sw-hw transfer overhead)

[1] M. Loose, S. Malla, and M. Stout, “Real time selective sequencing using nanopore technology,” BioRxiv, 2016.
[2] A. Payne, N. Holmes, T. Clarke, R. Munro, B. Debebe, and M. W. Loose, “Nanopore adaptive sequencing for mixed samples, whole exome capture and targeted panels.,” BioRxiv, 2020.

[3] M. M ̈uller, “Dynamic time warping,” Information retrieval for music and motion, pp. 69–84, 2007.

Supervisor: Sri Parameswaran
Co-supervisors: Hasindu Gamaarachchi, Hassaan Saadat

Assessor: Hui Guo

