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Introduction

HARU: Hardware Accelerated Read Until

Results and Evaluation

Selective sequencing with nanopore technology 
enables efficient targeted genome analysis
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Nanopore Sequencing
▪ Simple sample preparation (minimal priori knowledge)
▪ Real-time data output → real-time analysis
▪ Able to reject strands at individual nanopore channels

Within region → SEQUENCE

Out of bound  → REJECT

Mapping

Read Until Implementations
1. Squiggle-domain sequence matching

▪ First Read Until implementation (RUscripts [1])
▪ Uses Dynamic Time Warping (DTW) to map sequences
→ Needed 22-core server to keep up with slower sequencing rate, 
deprecated after sequencing rate ↑

2. Base-domain sequence matching
▪ Base-calls the squiggle and uses base-alignment to map [2]

▪ Able to scale to giga-base references
→ Requires high-end GPU to perform real-time base-calling 
(excessive), loses portability, and has high performance-watt ratio
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▪ First FPGA accelerated Read Until implementation
▪ Software-hardware co-design targeting low-cost MPSoCs
▪ Extends the MinION sequencer’s portable nature
▪ Low performance requirement for host machine

HARU: The proposed Read Until implementation

Read Until with HARU (MinION + HARU)
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HARU Client

HARU → Sequencer
▪ Receives sequence mapping results from 

HARU via Ethernet
▪ Determines whether the position of 

strand is within a region of interest
▪ Sends back rejection to sequencer 

software if not a necessary strand

Sequencer → HARU
▪ Collects real-time squiggle data via the 

Read Until API
▪ Pre-processes raw data
▪ Sends data to HARU via Ethernet

HARU Overview

▪ Server application running on a custom PetaLinux generated 
embedded Linux OS on the processing system of the Zynq MPSoC

▪ Responsible for query request handling
▪ Sends query over to accelerator via AXI stream (HP AXI)
▪ Controls the custom sDTW accelerator through custom drivers
▪ Sends results back to client via Ethernet using the same socket
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sDTW Driver

AXI DMA

HARU Server

Subsequence DTW Accelerator

Documented AXIs throughput:
• MM2S = 399.04 MB/s
• S2MM = 298.59 MB/s
Benchmarked AXIs throughput:
• 333.16 MB/s

sDTW accelerator driver
• HLS generated
• Accessed through UIO
/dev/class/uio/uio0

AXI DMA driver
• HARU specific AXI DMA driver
• Accessed through physical 

address space
/dev/mem
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Best match (min. cost)

Algorithmic optimisations:
a. Padding for cost matrix
b. Reduce cost matrix to single column

abs(x[i] – y[j])
abs(x[i] – y[j]) + top
abs(x[i] – y[j]) + min(top, left, top_left)
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top left top_leftHLS specific optimisations:
a. Pipelining of column computation
b. 16-bit fixed point data type
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Resulting accelerator:
▪ Oblique PE array with size of M
▪ Cost matrix with size of 3M
▪ Oblique PE array propagates through the

reference sequence
→ Task latency := (M + N −1) × Initiation Interval

Original subsequence DTW algorithm [3]:

Given two sequences X, Y
▪ X := (x1, x2, ..., xM ) of length M ∈ N
▪ Y := (y1, y2, ...yN ) of length N ∈ N

and cost matrix C ∈ RM×N

▪ C(m, n) := |xm-yn|

Experiment Details and Results

▪ Accelerator synthesised using Vivado HLS
▪ Targets the Xilinx Zynq-7020 device (xc7z020clg484-1)
▪ Tested on the target enrichment application for the bacteriophage lambda DNA
▪ Single direction has 48,502 bp, giving a full search space of 97,004 bp

Synthesis Results

Cycles Clock Freq. Estimated Time

Single directional reference search 48875 90 MHz 0.543 ms

Bi-directional reference search (Zynq-7020) 97755 90 MHz 1.086 ms

Unpack Streamed Query 250 90 MHz 2.778us

Overall Subseek DTW 98005 90 MHz 1.089 ms

Slice LUTs Slice Register Slice BRAM

Available (Zynq-7020) 53,200 106,400 13,300 140

HARU 32,341 (60.79%) 18.899 (17.76%) 9,615 (72.29%) 32.5 (23.21%)

HLS Latency Estimates

RUscripts (reference) HARU (proposed)

Laptop
Intel i7-8565U

Desktop
Intel i9-10850K

HARU 
system

Network latency Overall latency

Avg. sDTW task latency 345.75 ms 136.11 ms 1 ms 3.36 ms 4.36 ms

Comparison with RUscripts

Key results:
• Core sDTW: 345.75x faster than Intel i7 Laptop, 136.11x faster than Intel i9 Desktop
• Overall: 79.3x faster than RUscripts on Intel i7 Laptop, 31.22x faster than RUscripts on Intel i9 Desktop
→ Bottleneck is now the network latency (currently unoptimized)
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Evaluation

Preserves portability while enabling scalability
▪ Accesses HARU’s service through Ethernet
▪ No harsh requirements for host machine running HARU client
▪ Scalable by deploying a cluster of MPSoCs running HARU

→ In-the-field analysis with low hardware requirements

Provides an extendible low-cost yet high performance-per-watt framework
▪ HARU demonstrated the use of HLS tools to perform acceleration for DNA sequencing and analysis techniques
▪ The framework is interchangeable and extendable based on application and algorithmic requirements
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Local Area Network

“Needle in a haystack”
e.g. [regions of interest / others]
→   [pathogen / host]
→   [cancer / nontumor]

MinION sequencer Portable laptop MPSoC running HARU

Selective sequencing with MinION + HARU

Contributions
▪ Minimal requirements for performing targeted small-

genome analysis
▪ Demonstrates the use of High-Level-Synthesis (HLS) for 

DNA sequencing and analysis acceleration
▪ Provides an extendible framework for Read Until

Substantial speedup at a low hardware cost
▪ Subsequence DTW search now linearly dependant to the length of reference sequence
▪ Cost matrix only requires three times the size of squiggle sequence (subsequence)
▪ Optimal for smaller genomes (e.g. bacteria, virus)

→ fast and direct search, can fully store the reference in on-chip memory (no sw-hw transfer overhead)
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